Step |
Hyp |
Ref |
Expression |
1 |
|
lring.b |
|
2 |
|
lring.u |
|
3 |
|
lring.p |
|
4 |
|
lring.l |
|
5 |
|
lring.s |
|
6 |
|
lring.x |
|
7 |
|
lring.y |
|
8 |
|
lringring |
|
9 |
4 8
|
syl |
|
10 |
6 1
|
eleqtrd |
|
11 |
5 2
|
eleqtrd |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
12 13 14 15
|
dvrcan1 |
|
17 |
9 10 11 16
|
syl3anc |
|
18 |
17
|
adantr |
|
19 |
9
|
adantr |
|
20 |
|
simpr |
|
21 |
11
|
adantr |
|
22 |
13 15
|
unitmulcl |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
18 23
|
eqeltrrd |
|
25 |
2
|
adantr |
|
26 |
24 25
|
eleqtrrd |
|
27 |
26
|
orcd |
|
28 |
7 1
|
eleqtrd |
|
29 |
12 13 14 15
|
dvrcan1 |
|
30 |
9 28 11 29
|
syl3anc |
|
31 |
30
|
adantr |
|
32 |
9
|
adantr |
|
33 |
|
simpr |
|
34 |
11
|
adantr |
|
35 |
13 15
|
unitmulcl |
|
36 |
32 33 34 35
|
syl3anc |
|
37 |
31 36
|
eqeltrrd |
|
38 |
2
|
adantr |
|
39 |
37 38
|
eleqtrrd |
|
40 |
39
|
olcd |
|
41 |
|
eqid |
|
42 |
12 13 41 14
|
dvrdir |
|
43 |
9 10 28 11 42
|
syl13anc |
|
44 |
3
|
eqcomd |
|
45 |
44
|
oveqd |
|
46 |
9
|
ringgrpd |
|
47 |
12 41 46 10 28
|
grpcld |
|
48 |
|
eqid |
|
49 |
12 13 14 48
|
dvreq1 |
|
50 |
9 47 11 49
|
syl3anc |
|
51 |
45 50
|
mpbird |
|
52 |
43 51
|
eqtr3d |
|
53 |
|
oveq2 |
|
54 |
53
|
eqeq1d |
|
55 |
|
eleq1 |
|
56 |
55
|
orbi2d |
|
57 |
54 56
|
imbi12d |
|
58 |
|
oveq1 |
|
59 |
58
|
eqeq1d |
|
60 |
|
eleq1 |
|
61 |
60
|
orbi1d |
|
62 |
59 61
|
imbi12d |
|
63 |
62
|
ralbidv |
|
64 |
12 41 48 13
|
islring |
|
65 |
4 64
|
sylib |
|
66 |
65
|
simprd |
|
67 |
12 13 14
|
dvrcl |
|
68 |
9 10 11 67
|
syl3anc |
|
69 |
63 66 68
|
rspcdva |
|
70 |
12 13 14
|
dvrcl |
|
71 |
9 28 11 70
|
syl3anc |
|
72 |
57 69 71
|
rspcdva |
|
73 |
52 72
|
mpd |
|
74 |
27 40 73
|
mpjaodan |
|