Metamath Proof Explorer


Theorem lringnz

Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Hypotheses lringnz.1 1 ˙ = 1 R
lringnz.2 0 ˙ = 0 R
Assertion lringnz R LRing 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 lringnz.1 1 ˙ = 1 R
2 lringnz.2 0 ˙ = 0 R
3 lringnzr R LRing R NzRing
4 1 2 nzrnz R NzRing 1 ˙ 0 ˙
5 3 4 syl R LRing 1 ˙ 0 ˙