| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islring.b |
|- B = ( Base ` R ) |
| 2 |
|
islring.a |
|- .+ = ( +g ` R ) |
| 3 |
|
islring.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
islring.u |
|- U = ( Unit ` R ) |
| 5 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
| 7 |
|
fveq2 |
|- ( r = R -> ( +g ` r ) = ( +g ` R ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( r = R -> ( +g ` r ) = .+ ) |
| 9 |
8
|
oveqd |
|- ( r = R -> ( x ( +g ` r ) y ) = ( x .+ y ) ) |
| 10 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
| 12 |
9 11
|
eqeq12d |
|- ( r = R -> ( ( x ( +g ` r ) y ) = ( 1r ` r ) <-> ( x .+ y ) = .1. ) ) |
| 13 |
|
fveq2 |
|- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
| 14 |
13 4
|
eqtr4di |
|- ( r = R -> ( Unit ` r ) = U ) |
| 15 |
14
|
eleq2d |
|- ( r = R -> ( x e. ( Unit ` r ) <-> x e. U ) ) |
| 16 |
14
|
eleq2d |
|- ( r = R -> ( y e. ( Unit ` r ) <-> y e. U ) ) |
| 17 |
15 16
|
orbi12d |
|- ( r = R -> ( ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) <-> ( x e. U \/ y e. U ) ) ) |
| 18 |
12 17
|
imbi12d |
|- ( r = R -> ( ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) |
| 19 |
6 18
|
raleqbidv |
|- ( r = R -> ( A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) |
| 20 |
6 19
|
raleqbidv |
|- ( r = R -> ( A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) |
| 21 |
|
df-lring |
|- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } |
| 22 |
20 21
|
elrab2 |
|- ( R e. LRing <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) |