| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | islring.a |  |-  .+ = ( +g ` R ) | 
						
							| 3 |  | islring.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | islring.u |  |-  U = ( Unit ` R ) | 
						
							| 5 |  | fveq2 |  |-  ( r = R -> ( Base ` r ) = ( Base ` R ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( r = R -> ( Base ` r ) = B ) | 
						
							| 7 |  | fveq2 |  |-  ( r = R -> ( +g ` r ) = ( +g ` R ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( r = R -> ( +g ` r ) = .+ ) | 
						
							| 9 | 8 | oveqd |  |-  ( r = R -> ( x ( +g ` r ) y ) = ( x .+ y ) ) | 
						
							| 10 |  | fveq2 |  |-  ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) | 
						
							| 11 | 10 3 | eqtr4di |  |-  ( r = R -> ( 1r ` r ) = .1. ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( r = R -> ( ( x ( +g ` r ) y ) = ( 1r ` r ) <-> ( x .+ y ) = .1. ) ) | 
						
							| 13 |  | fveq2 |  |-  ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) | 
						
							| 14 | 13 4 | eqtr4di |  |-  ( r = R -> ( Unit ` r ) = U ) | 
						
							| 15 | 14 | eleq2d |  |-  ( r = R -> ( x e. ( Unit ` r ) <-> x e. U ) ) | 
						
							| 16 | 14 | eleq2d |  |-  ( r = R -> ( y e. ( Unit ` r ) <-> y e. U ) ) | 
						
							| 17 | 15 16 | orbi12d |  |-  ( r = R -> ( ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) <-> ( x e. U \/ y e. U ) ) ) | 
						
							| 18 | 12 17 | imbi12d |  |-  ( r = R -> ( ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) | 
						
							| 19 | 6 18 | raleqbidv |  |-  ( r = R -> ( A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) | 
						
							| 20 | 6 19 | raleqbidv |  |-  ( r = R -> ( A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) <-> A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) | 
						
							| 21 |  | df-lring |  |-  LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } | 
						
							| 22 | 20 21 | elrab2 |  |-  ( R e. LRing <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) |