Metamath Proof Explorer


Definition df-prjcrv

Description: Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 and prjspvs ). (Contributed by SN, 23-Nov-2024)

Ref Expression
Assertion df-prjcrv ℙ𝕣𝕠𝕛Crv = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) } } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprjcrv ℙ𝕣𝕠𝕛Crv
1 vn 𝑛
2 cn0 0
3 vk 𝑘
4 cfield Field
5 vf 𝑓
6 cc0 0
7 cfz ...
8 1 cv 𝑛
9 6 8 7 co ( 0 ... 𝑛 )
10 cmhp mHomP
11 3 cv 𝑘
12 9 11 10 co ( ( 0 ... 𝑛 ) mHomP 𝑘 )
13 12 crn ran ( ( 0 ... 𝑛 ) mHomP 𝑘 )
14 13 cuni ran ( ( 0 ... 𝑛 ) mHomP 𝑘 )
15 vp 𝑝
16 cprjspn ℙ𝕣𝕠𝕛n
17 8 11 16 co ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )
18 cevl eval
19 9 11 18 co ( ( 0 ... 𝑛 ) eval 𝑘 )
20 5 cv 𝑓
21 20 19 cfv ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 )
22 15 cv 𝑝
23 21 22 cima ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 )
24 c0g 0g
25 11 24 cfv ( 0g𝑘 )
26 25 csn { ( 0g𝑘 ) }
27 23 26 wceq ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) }
28 27 15 17 crab { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) } }
29 5 14 28 cmpt ( 𝑓 ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) } } )
30 1 3 2 4 29 cmpo ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) } } ) )
31 0 30 wceq ℙ𝕣𝕠𝕛Crv = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g𝑘 ) } } ) )