| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprjcrv |
⊢ ℙ𝕣𝕠𝕛Crv |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn0 |
⊢ ℕ0 |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cfield |
⊢ Field |
| 5 |
|
vf |
⊢ 𝑓 |
| 6 |
|
cc0 |
⊢ 0 |
| 7 |
|
cfz |
⊢ ... |
| 8 |
1
|
cv |
⊢ 𝑛 |
| 9 |
6 8 7
|
co |
⊢ ( 0 ... 𝑛 ) |
| 10 |
|
cmhp |
⊢ mHomP |
| 11 |
3
|
cv |
⊢ 𝑘 |
| 12 |
9 11 10
|
co |
⊢ ( ( 0 ... 𝑛 ) mHomP 𝑘 ) |
| 13 |
12
|
crn |
⊢ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) |
| 14 |
13
|
cuni |
⊢ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) |
| 15 |
|
vp |
⊢ 𝑝 |
| 16 |
|
cprjspn |
⊢ ℙ𝕣𝕠𝕛n |
| 17 |
8 11 16
|
co |
⊢ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) |
| 18 |
|
cevl |
⊢ eval |
| 19 |
9 11 18
|
co |
⊢ ( ( 0 ... 𝑛 ) eval 𝑘 ) |
| 20 |
5
|
cv |
⊢ 𝑓 |
| 21 |
20 19
|
cfv |
⊢ ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) |
| 22 |
15
|
cv |
⊢ 𝑝 |
| 23 |
21 22
|
cima |
⊢ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) |
| 24 |
|
c0g |
⊢ 0g |
| 25 |
11 24
|
cfv |
⊢ ( 0g ‘ 𝑘 ) |
| 26 |
25
|
csn |
⊢ { ( 0g ‘ 𝑘 ) } |
| 27 |
23 26
|
wceq |
⊢ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } |
| 28 |
27 15 17
|
crab |
⊢ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } |
| 29 |
5 14 28
|
cmpt |
⊢ ( 𝑓 ∈ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } ) |
| 30 |
1 3 2 4 29
|
cmpo |
⊢ ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ∈ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } ) ) |
| 31 |
0 30
|
wceq |
⊢ ℙ𝕣𝕠𝕛Crv = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ∈ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } ) ) |