| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cprjcrv |  |-  PrjCrv | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | vk |  |-  k | 
						
							| 4 |  | cfield |  |-  Field | 
						
							| 5 |  | vf |  |-  f | 
						
							| 6 |  | cc0 |  |-  0 | 
						
							| 7 |  | cfz |  |-  ... | 
						
							| 8 | 1 | cv |  |-  n | 
						
							| 9 | 6 8 7 | co |  |-  ( 0 ... n ) | 
						
							| 10 |  | cmhp |  |-  mHomP | 
						
							| 11 | 3 | cv |  |-  k | 
						
							| 12 | 9 11 10 | co |  |-  ( ( 0 ... n ) mHomP k ) | 
						
							| 13 | 12 | crn |  |-  ran ( ( 0 ... n ) mHomP k ) | 
						
							| 14 | 13 | cuni |  |-  U. ran ( ( 0 ... n ) mHomP k ) | 
						
							| 15 |  | vp |  |-  p | 
						
							| 16 |  | cprjspn |  |-  PrjSpn | 
						
							| 17 | 8 11 16 | co |  |-  ( n PrjSpn k ) | 
						
							| 18 |  | cevl |  |-  eval | 
						
							| 19 | 9 11 18 | co |  |-  ( ( 0 ... n ) eval k ) | 
						
							| 20 | 5 | cv |  |-  f | 
						
							| 21 | 20 19 | cfv |  |-  ( ( ( 0 ... n ) eval k ) ` f ) | 
						
							| 22 | 15 | cv |  |-  p | 
						
							| 23 | 21 22 | cima |  |-  ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) | 
						
							| 24 |  | c0g |  |-  0g | 
						
							| 25 | 11 24 | cfv |  |-  ( 0g ` k ) | 
						
							| 26 | 25 | csn |  |-  { ( 0g ` k ) } | 
						
							| 27 | 23 26 | wceq |  |-  ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } | 
						
							| 28 | 27 15 17 | crab |  |-  { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } | 
						
							| 29 | 5 14 28 | cmpt |  |-  ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) | 
						
							| 30 | 1 3 2 4 29 | cmpo |  |-  ( n e. NN0 , k e. Field |-> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) ) | 
						
							| 31 | 0 30 | wceq |  |-  PrjCrv = ( n e. NN0 , k e. Field |-> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) ) |