| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprjcrv |
|- PrjCrv |
| 1 |
|
vn |
|- n |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vk |
|- k |
| 4 |
|
cfield |
|- Field |
| 5 |
|
vf |
|- f |
| 6 |
|
cc0 |
|- 0 |
| 7 |
|
cfz |
|- ... |
| 8 |
1
|
cv |
|- n |
| 9 |
6 8 7
|
co |
|- ( 0 ... n ) |
| 10 |
|
cmhp |
|- mHomP |
| 11 |
3
|
cv |
|- k |
| 12 |
9 11 10
|
co |
|- ( ( 0 ... n ) mHomP k ) |
| 13 |
12
|
crn |
|- ran ( ( 0 ... n ) mHomP k ) |
| 14 |
13
|
cuni |
|- U. ran ( ( 0 ... n ) mHomP k ) |
| 15 |
|
vp |
|- p |
| 16 |
|
cprjspn |
|- PrjSpn |
| 17 |
8 11 16
|
co |
|- ( n PrjSpn k ) |
| 18 |
|
cevl |
|- eval |
| 19 |
9 11 18
|
co |
|- ( ( 0 ... n ) eval k ) |
| 20 |
5
|
cv |
|- f |
| 21 |
20 19
|
cfv |
|- ( ( ( 0 ... n ) eval k ) ` f ) |
| 22 |
15
|
cv |
|- p |
| 23 |
21 22
|
cima |
|- ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) |
| 24 |
|
c0g |
|- 0g |
| 25 |
11 24
|
cfv |
|- ( 0g ` k ) |
| 26 |
25
|
csn |
|- { ( 0g ` k ) } |
| 27 |
23 26
|
wceq |
|- ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } |
| 28 |
27 15 17
|
crab |
|- { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } |
| 29 |
5 14 28
|
cmpt |
|- ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) |
| 30 |
1 3 2 4 29
|
cmpo |
|- ( n e. NN0 , k e. Field |-> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) ) |
| 31 |
0 30
|
wceq |
|- PrjCrv = ( n e. NN0 , k e. Field |-> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) ) |