Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrvfval.h |
|- H = ( ( 0 ... N ) mHomP K ) |
2 |
|
prjcrvfval.e |
|- E = ( ( 0 ... N ) eval K ) |
3 |
|
prjcrvfval.p |
|- P = ( N PrjSpn K ) |
4 |
|
prjcrvfval.0 |
|- .0. = ( 0g ` K ) |
5 |
|
prjcrvfval.n |
|- ( ph -> N e. NN0 ) |
6 |
|
prjcrvfval.k |
|- ( ph -> K e. Field ) |
7 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
8 |
|
oveq12 |
|- ( ( ( 0 ... n ) = ( 0 ... N ) /\ k = K ) -> ( ( 0 ... n ) mHomP k ) = ( ( 0 ... N ) mHomP K ) ) |
9 |
7 8
|
sylan |
|- ( ( n = N /\ k = K ) -> ( ( 0 ... n ) mHomP k ) = ( ( 0 ... N ) mHomP K ) ) |
10 |
9 1
|
eqtr4di |
|- ( ( n = N /\ k = K ) -> ( ( 0 ... n ) mHomP k ) = H ) |
11 |
10
|
rneqd |
|- ( ( n = N /\ k = K ) -> ran ( ( 0 ... n ) mHomP k ) = ran H ) |
12 |
11
|
unieqd |
|- ( ( n = N /\ k = K ) -> U. ran ( ( 0 ... n ) mHomP k ) = U. ran H ) |
13 |
|
oveq12 |
|- ( ( n = N /\ k = K ) -> ( n PrjSpn k ) = ( N PrjSpn K ) ) |
14 |
13 3
|
eqtr4di |
|- ( ( n = N /\ k = K ) -> ( n PrjSpn k ) = P ) |
15 |
|
id |
|- ( k = K -> k = K ) |
16 |
7 15
|
oveqan12d |
|- ( ( n = N /\ k = K ) -> ( ( 0 ... n ) eval k ) = ( ( 0 ... N ) eval K ) ) |
17 |
16 2
|
eqtr4di |
|- ( ( n = N /\ k = K ) -> ( ( 0 ... n ) eval k ) = E ) |
18 |
17
|
fveq1d |
|- ( ( n = N /\ k = K ) -> ( ( ( 0 ... n ) eval k ) ` f ) = ( E ` f ) ) |
19 |
18
|
imaeq1d |
|- ( ( n = N /\ k = K ) -> ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = ( ( E ` f ) " p ) ) |
20 |
|
fveq2 |
|- ( k = K -> ( 0g ` k ) = ( 0g ` K ) ) |
21 |
20 4
|
eqtr4di |
|- ( k = K -> ( 0g ` k ) = .0. ) |
22 |
21
|
adantl |
|- ( ( n = N /\ k = K ) -> ( 0g ` k ) = .0. ) |
23 |
22
|
sneqd |
|- ( ( n = N /\ k = K ) -> { ( 0g ` k ) } = { .0. } ) |
24 |
19 23
|
eqeq12d |
|- ( ( n = N /\ k = K ) -> ( ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } <-> ( ( E ` f ) " p ) = { .0. } ) ) |
25 |
14 24
|
rabeqbidv |
|- ( ( n = N /\ k = K ) -> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } = { p e. P | ( ( E ` f ) " p ) = { .0. } } ) |
26 |
12 25
|
mpteq12dv |
|- ( ( n = N /\ k = K ) -> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) |
27 |
|
df-prjcrv |
|- PrjCrv = ( n e. NN0 , k e. Field |-> ( f e. U. ran ( ( 0 ... n ) mHomP k ) |-> { p e. ( n PrjSpn k ) | ( ( ( ( 0 ... n ) eval k ) ` f ) " p ) = { ( 0g ` k ) } } ) ) |
28 |
1
|
ovexi |
|- H e. _V |
29 |
28
|
rnex |
|- ran H e. _V |
30 |
29
|
uniex |
|- U. ran H e. _V |
31 |
30
|
mptex |
|- ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) e. _V |
32 |
26 27 31
|
ovmpoa |
|- ( ( N e. NN0 /\ K e. Field ) -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) |
33 |
5 6 32
|
syl2anc |
|- ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) |