Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrvfval.h |
|- H = ( ( 0 ... N ) mHomP K ) |
2 |
|
prjcrvfval.e |
|- E = ( ( 0 ... N ) eval K ) |
3 |
|
prjcrvfval.p |
|- P = ( N PrjSpn K ) |
4 |
|
prjcrvfval.0 |
|- .0. = ( 0g ` K ) |
5 |
|
prjcrvfval.n |
|- ( ph -> N e. NN0 ) |
6 |
|
prjcrvfval.k |
|- ( ph -> K e. Field ) |
7 |
|
prjcrvval.f |
|- ( ph -> F e. U. ran H ) |
8 |
|
fveq2 |
|- ( f = F -> ( E ` f ) = ( E ` F ) ) |
9 |
8
|
imaeq1d |
|- ( f = F -> ( ( E ` f ) " p ) = ( ( E ` F ) " p ) ) |
10 |
9
|
eqeq1d |
|- ( f = F -> ( ( ( E ` f ) " p ) = { .0. } <-> ( ( E ` F ) " p ) = { .0. } ) ) |
11 |
10
|
rabbidv |
|- ( f = F -> { p e. P | ( ( E ` f ) " p ) = { .0. } } = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) |
12 |
1 2 3 4 5 6
|
prjcrvfval |
|- ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) |
13 |
3
|
ovexi |
|- P e. _V |
14 |
13
|
rabex |
|- { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V |
15 |
14
|
a1i |
|- ( ph -> { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V ) |
16 |
11 12 7 15
|
fvmptd4 |
|- ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) |