Metamath Proof Explorer


Theorem prjcrvval

Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrvfval.h
|- H = ( ( 0 ... N ) mHomP K )
prjcrvfval.e
|- E = ( ( 0 ... N ) eval K )
prjcrvfval.p
|- P = ( N PrjSpn K )
prjcrvfval.0
|- .0. = ( 0g ` K )
prjcrvfval.n
|- ( ph -> N e. NN0 )
prjcrvfval.k
|- ( ph -> K e. Field )
prjcrvval.f
|- ( ph -> F e. U. ran H )
Assertion prjcrvval
|- ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } )

Proof

Step Hyp Ref Expression
1 prjcrvfval.h
 |-  H = ( ( 0 ... N ) mHomP K )
2 prjcrvfval.e
 |-  E = ( ( 0 ... N ) eval K )
3 prjcrvfval.p
 |-  P = ( N PrjSpn K )
4 prjcrvfval.0
 |-  .0. = ( 0g ` K )
5 prjcrvfval.n
 |-  ( ph -> N e. NN0 )
6 prjcrvfval.k
 |-  ( ph -> K e. Field )
7 prjcrvval.f
 |-  ( ph -> F e. U. ran H )
8 fveq2
 |-  ( f = F -> ( E ` f ) = ( E ` F ) )
9 8 imaeq1d
 |-  ( f = F -> ( ( E ` f ) " p ) = ( ( E ` F ) " p ) )
10 9 eqeq1d
 |-  ( f = F -> ( ( ( E ` f ) " p ) = { .0. } <-> ( ( E ` F ) " p ) = { .0. } ) )
11 10 rabbidv
 |-  ( f = F -> { p e. P | ( ( E ` f ) " p ) = { .0. } } = { p e. P | ( ( E ` F ) " p ) = { .0. } } )
12 1 2 3 4 5 6 prjcrvfval
 |-  ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) )
13 3 ovexi
 |-  P e. _V
14 13 rabex
 |-  { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V
15 14 a1i
 |-  ( ph -> { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V )
16 11 12 7 15 fvmptd4
 |-  ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } )