| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjcrvfval.h |  |-  H = ( ( 0 ... N ) mHomP K ) | 
						
							| 2 |  | prjcrvfval.e |  |-  E = ( ( 0 ... N ) eval K ) | 
						
							| 3 |  | prjcrvfval.p |  |-  P = ( N PrjSpn K ) | 
						
							| 4 |  | prjcrvfval.0 |  |-  .0. = ( 0g ` K ) | 
						
							| 5 |  | prjcrvfval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | prjcrvfval.k |  |-  ( ph -> K e. Field ) | 
						
							| 7 |  | prjcrvval.f |  |-  ( ph -> F e. U. ran H ) | 
						
							| 8 |  | fveq2 |  |-  ( f = F -> ( E ` f ) = ( E ` F ) ) | 
						
							| 9 | 8 | imaeq1d |  |-  ( f = F -> ( ( E ` f ) " p ) = ( ( E ` F ) " p ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( f = F -> ( ( ( E ` f ) " p ) = { .0. } <-> ( ( E ` F ) " p ) = { .0. } ) ) | 
						
							| 11 | 10 | rabbidv |  |-  ( f = F -> { p e. P | ( ( E ` f ) " p ) = { .0. } } = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) | 
						
							| 12 | 1 2 3 4 5 6 | prjcrvfval |  |-  ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) | 
						
							| 13 | 3 | ovexi |  |-  P e. _V | 
						
							| 14 | 13 | rabex |  |-  { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> { p e. P | ( ( E ` F ) " p ) = { .0. } } e. _V ) | 
						
							| 16 | 11 12 7 15 | fvmptd4 |  |-  ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) |