Metamath Proof Explorer


Theorem prjcrvval

Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrvfval.h H = 0 N mHomP K
prjcrvfval.e E = 0 N eval K
prjcrvfval.p P = N ℙ𝕣𝕠𝕛 n K
prjcrvfval.0 0 ˙ = 0 K
prjcrvfval.n φ N 0
prjcrvfval.k φ K Field
prjcrvval.f φ F ran H
Assertion prjcrvval φ N PrjCrv K F = p P | E F p = 0 ˙

Proof

Step Hyp Ref Expression
1 prjcrvfval.h H = 0 N mHomP K
2 prjcrvfval.e E = 0 N eval K
3 prjcrvfval.p P = N ℙ𝕣𝕠𝕛 n K
4 prjcrvfval.0 0 ˙ = 0 K
5 prjcrvfval.n φ N 0
6 prjcrvfval.k φ K Field
7 prjcrvval.f φ F ran H
8 fveq2 f = F E f = E F
9 8 imaeq1d f = F E f p = E F p
10 9 eqeq1d f = F E f p = 0 ˙ E F p = 0 ˙
11 10 rabbidv f = F p P | E f p = 0 ˙ = p P | E F p = 0 ˙
12 1 2 3 4 5 6 prjcrvfval φ N PrjCrv K = f ran H p P | E f p = 0 ˙
13 3 ovexi P V
14 13 rabex p P | E F p = 0 ˙ V
15 14 a1i φ p P | E F p = 0 ˙ V
16 11 12 7 15 fvmptd4 φ N PrjCrv K F = p P | E F p = 0 ˙