Metamath Proof Explorer


Theorem prjcrvval

Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrvfval.h H=0NmHomPK
prjcrvfval.e E=0NevalK
prjcrvfval.p P=Nℙ𝕣𝕠𝕛nK
prjcrvfval.0 0˙=0K
prjcrvfval.n φN0
prjcrvfval.k φKField
prjcrvval.f φFranH
Assertion prjcrvval Could not format assertion : No typesetting found for |- ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) with typecode |-

Proof

Step Hyp Ref Expression
1 prjcrvfval.h H=0NmHomPK
2 prjcrvfval.e E=0NevalK
3 prjcrvfval.p P=Nℙ𝕣𝕠𝕛nK
4 prjcrvfval.0 0˙=0K
5 prjcrvfval.n φN0
6 prjcrvfval.k φKField
7 prjcrvval.f φFranH
8 fveq2 f=FEf=EF
9 8 imaeq1d f=FEfp=EFp
10 9 eqeq1d f=FEfp=0˙EFp=0˙
11 10 rabbidv f=FpP|Efp=0˙=pP|EFp=0˙
12 1 2 3 4 5 6 prjcrvfval Could not format ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) : No typesetting found for |- ( ph -> ( N PrjCrv K ) = ( f e. U. ran H |-> { p e. P | ( ( E ` f ) " p ) = { .0. } } ) ) with typecode |-
13 3 ovexi PV
14 13 rabex pP|EFp=0˙V
15 14 a1i φpP|EFp=0˙V
16 11 12 7 15 fvmptd4 Could not format ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) : No typesetting found for |- ( ph -> ( ( N PrjCrv K ) ` F ) = { p e. P | ( ( E ` F ) " p ) = { .0. } } ) with typecode |-