Metamath Proof Explorer


Theorem prjcrvval

Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrvfval.h 𝐻 = ( ( 0 ... 𝑁 ) mHomP 𝐾 )
prjcrvfval.e 𝐸 = ( ( 0 ... 𝑁 ) eval 𝐾 )
prjcrvfval.p 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )
prjcrvfval.0 0 = ( 0g𝐾 )
prjcrvfval.n ( 𝜑𝑁 ∈ ℕ0 )
prjcrvfval.k ( 𝜑𝐾 ∈ Field )
prjcrvval.f ( 𝜑𝐹 ran 𝐻 )
Assertion prjcrvval ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 𝐹 ) = { 𝑝𝑃 ∣ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } } )

Proof

Step Hyp Ref Expression
1 prjcrvfval.h 𝐻 = ( ( 0 ... 𝑁 ) mHomP 𝐾 )
2 prjcrvfval.e 𝐸 = ( ( 0 ... 𝑁 ) eval 𝐾 )
3 prjcrvfval.p 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )
4 prjcrvfval.0 0 = ( 0g𝐾 )
5 prjcrvfval.n ( 𝜑𝑁 ∈ ℕ0 )
6 prjcrvfval.k ( 𝜑𝐾 ∈ Field )
7 prjcrvval.f ( 𝜑𝐹 ran 𝐻 )
8 fveq2 ( 𝑓 = 𝐹 → ( 𝐸𝑓 ) = ( 𝐸𝐹 ) )
9 8 imaeq1d ( 𝑓 = 𝐹 → ( ( 𝐸𝑓 ) “ 𝑝 ) = ( ( 𝐸𝐹 ) “ 𝑝 ) )
10 9 eqeq1d ( 𝑓 = 𝐹 → ( ( ( 𝐸𝑓 ) “ 𝑝 ) = { 0 } ↔ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } ) )
11 10 rabbidv ( 𝑓 = 𝐹 → { 𝑝𝑃 ∣ ( ( 𝐸𝑓 ) “ 𝑝 ) = { 0 } } = { 𝑝𝑃 ∣ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } } )
12 1 2 3 4 5 6 prjcrvfval ( 𝜑 → ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) = ( 𝑓 ran 𝐻 ↦ { 𝑝𝑃 ∣ ( ( 𝐸𝑓 ) “ 𝑝 ) = { 0 } } ) )
13 3 ovexi 𝑃 ∈ V
14 13 rabex { 𝑝𝑃 ∣ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } } ∈ V
15 14 a1i ( 𝜑 → { 𝑝𝑃 ∣ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } } ∈ V )
16 11 12 7 15 fvmptd4 ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 𝐹 ) = { 𝑝𝑃 ∣ ( ( 𝐸𝐹 ) “ 𝑝 ) = { 0 } } )