Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrvfval.h |
⊢ 𝐻 = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) |
2 |
|
prjcrvfval.e |
⊢ 𝐸 = ( ( 0 ... 𝑁 ) eval 𝐾 ) |
3 |
|
prjcrvfval.p |
⊢ 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) |
4 |
|
prjcrvfval.0 |
⊢ 0 = ( 0g ‘ 𝐾 ) |
5 |
|
prjcrvfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
prjcrvfval.k |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
7 |
|
prjcrvval.f |
⊢ ( 𝜑 → 𝐹 ∈ ∪ ran 𝐻 ) |
8 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐸 ‘ 𝑓 ) = ( 𝐸 ‘ 𝐹 ) ) |
9 |
8
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } ↔ ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) = { 0 } ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑓 = 𝐹 → { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) = { 0 } } ) |
12 |
1 2 3 4 5 6
|
prjcrvfval |
⊢ ( 𝜑 → ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) = ( 𝑓 ∈ ∪ ran 𝐻 ↦ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) ) |
13 |
3
|
ovexi |
⊢ 𝑃 ∈ V |
14 |
13
|
rabex |
⊢ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) = { 0 } } ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) = { 0 } } ∈ V ) |
16 |
11 12 7 15
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 𝐹 ) = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝐹 ) “ 𝑝 ) = { 0 } } ) |