| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjcrvfval.h | ⊢ 𝐻  =  ( ( 0 ... 𝑁 )  mHomP  𝐾 ) | 
						
							| 2 |  | prjcrvfval.e | ⊢ 𝐸  =  ( ( 0 ... 𝑁 )  eval  𝐾 ) | 
						
							| 3 |  | prjcrvfval.p | ⊢ 𝑃  =  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) | 
						
							| 4 |  | prjcrvfval.0 | ⊢  0   =  ( 0g ‘ 𝐾 ) | 
						
							| 5 |  | prjcrvfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | prjcrvfval.k | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 7 |  | prjcrvval.f | ⊢ ( 𝜑  →  𝐹  ∈  ∪  ran  𝐻 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝐸 ‘ 𝑓 )  =  ( 𝐸 ‘ 𝐹 ) ) | 
						
							| 9 | 8 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  }  ↔  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 )  =  {  0  } ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑓  =  𝐹  →  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } }  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 )  =  {  0  } } ) | 
						
							| 12 | 1 2 3 4 5 6 | prjcrvfval | ⊢ ( 𝜑  →  ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 )  =  ( 𝑓  ∈  ∪  ran  𝐻  ↦  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } ) ) | 
						
							| 13 | 3 | ovexi | ⊢ 𝑃  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 )  =  {  0  } }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 )  =  {  0  } }  ∈  V ) | 
						
							| 16 | 11 12 7 15 | fvmptd4 | ⊢ ( 𝜑  →  ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 𝐹 )  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝐹 )  “  𝑝 )  =  {  0  } } ) |