Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrv0.y |
⊢ 𝑌 = ( ( 0 ... 𝑁 ) mPoly 𝐾 ) |
2 |
|
prjcrv0.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
3 |
|
prjcrv0.p |
⊢ 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) |
4 |
|
prjcrv0.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
prjcrv0.k |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
6 |
|
eqid |
⊢ ( ( 0 ... 𝑁 ) mHomP 𝐾 ) = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) |
7 |
|
eqid |
⊢ ( ( 0 ... 𝑁 ) eval 𝐾 ) = ( ( 0 ... 𝑁 ) eval 𝐾 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
9 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ 𝑌 ) ∣ ( 𝑓 supp ( 0g ‘ 𝐾 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
12 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
13 |
6 1 10 8 11 12 5
|
mhpfval |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) mHomP 𝐾 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ 𝑌 ) ∣ ( 𝑓 supp ( 0g ‘ 𝐾 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
14 |
13
|
funeqd |
⊢ ( 𝜑 → ( Fun ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ↔ Fun ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ 𝑌 ) ∣ ( 𝑓 supp ( 0g ‘ 𝐾 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) ) |
15 |
9 14
|
mpbiri |
⊢ ( 𝜑 → Fun ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
16 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
17 |
16
|
crnggrpd |
⊢ ( 𝜑 → 𝐾 ∈ Grp ) |
18 |
1 11 8 2 12 17
|
mpl0 |
⊢ ( 𝜑 → 0 = ( { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝐾 ) } ) ) |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
19
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
21 |
6 8 11 12 17 20
|
mhp0cl |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝐾 ) } ) ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 0 ) ) |
22 |
18 21
|
eqeltrd |
⊢ ( 𝜑 → 0 ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 0 ) ) |
23 |
|
elunirn2 |
⊢ ( ( Fun ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ∧ 0 ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 0 ) ) → 0 ∈ ∪ ran ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
24 |
15 22 23
|
syl2anc |
⊢ ( 𝜑 → 0 ∈ ∪ ran ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
25 |
6 7 3 8 4 5 24
|
prjcrvval |
⊢ ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } } ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
27 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 0 ... 𝑁 ) ∈ V ) |
28 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ∈ CRing ) |
29 |
7 26 1 8 2 27 28
|
evl0 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) = ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) ) |
30 |
29
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) ) |
31 |
3
|
eleq2i |
⊢ ( 𝑝 ∈ 𝑃 ↔ 𝑝 ∈ ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) ) |
32 |
31
|
biimpi |
⊢ ( 𝑝 ∈ 𝑃 → 𝑝 ∈ ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) ) |
34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑁 ∈ ℕ0 ) |
35 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
36 |
35
|
simplbi |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ DivRing ) |
37 |
5 36
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ∈ DivRing ) |
39 |
|
prjspnval |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
40 |
34 38 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
41 |
|
eqid |
⊢ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
42 |
41
|
frlmlvec |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 𝑁 ) ∈ V ) → ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LVec ) |
43 |
37 12 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LVec ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LVec ) |
45 |
|
eqid |
⊢ ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) |
46 |
|
eqid |
⊢ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) = ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) |
47 |
|
eqid |
⊢ ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) |
48 |
45 46 47
|
prjspval2 |
⊢ ( ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LVec → ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ∪ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
49 |
44 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ℙ𝕣𝕠𝕛 ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ∪ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
50 |
40 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) = ∪ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
51 |
33 50
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ ∪ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
52 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ↔ ∃ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
53 |
51 52
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ∃ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) |
54 |
|
eqid |
⊢ { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } |
55 |
41 26 8 54
|
frlmbas |
⊢ ( ( 𝐾 ∈ Field ∧ ( 0 ... 𝑁 ) ∈ V ) → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
56 |
5 12 55
|
syl2anc |
⊢ ( 𝜑 → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
57 |
|
ssrab2 |
⊢ { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) |
58 |
56 57
|
eqsstrrdi |
⊢ ( 𝜑 → ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
60 |
|
eldifi |
⊢ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) → 𝑎 ∈ ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → 𝑎 ∈ ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
62 |
61
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → 𝑎 ∈ ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
63 |
59 62
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → 𝑎 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
64 |
|
velsn |
⊢ ( 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ↔ 𝑝 = ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) |
65 |
64
|
anbi2i |
⊢ ( ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ↔ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 = ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) ) |
66 |
43
|
lveclmodd |
⊢ ( 𝜑 → ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LMod ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LMod ) |
68 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) |
69 |
68 47
|
lspsnid |
⊢ ( ( ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) → 𝑎 ∈ ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ) |
70 |
67 61 69
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → 𝑎 ∈ ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ) |
71 |
|
eldifn |
⊢ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) → ¬ 𝑎 ∈ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → ¬ 𝑎 ∈ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) |
73 |
70 72
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → 𝑎 ∈ ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) |
74 |
|
eleq2 |
⊢ ( 𝑝 = ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) → ( 𝑎 ∈ 𝑝 ↔ 𝑎 ∈ ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) ) |
75 |
73 74
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) → ( 𝑝 = ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) → 𝑎 ∈ 𝑝 ) ) |
76 |
75
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 = ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) ) → 𝑎 ∈ 𝑝 ) |
77 |
65 76
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → 𝑎 ∈ 𝑝 ) |
78 |
63 77
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → 𝑎 ∈ ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ) |
79 |
78
|
ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑎 ∈ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ∧ 𝑝 ∈ { ( ( ( LSpan ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ‘ { 𝑎 } ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) } ) ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ ) |
80 |
53 79
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ ) |
81 |
|
xpima2 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
83 |
30 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
84 |
83
|
rabeqcda |
⊢ ( 𝜑 → { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } } = 𝑃 ) |
85 |
25 84
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = 𝑃 ) |