Metamath Proof Explorer


Theorem prjcrv0

Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrv0.y 𝑌 = ( ( 0 ... 𝑁 ) mPoly 𝐾 )
prjcrv0.0 0 = ( 0g𝑌 )
prjcrv0.p 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )
prjcrv0.n ( 𝜑𝑁 ∈ ℕ0 )
prjcrv0.k ( 𝜑𝐾 ∈ Field )
Assertion prjcrv0 ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = 𝑃 )

Proof

Step Hyp Ref Expression
1 prjcrv0.y 𝑌 = ( ( 0 ... 𝑁 ) mPoly 𝐾 )
2 prjcrv0.0 0 = ( 0g𝑌 )
3 prjcrv0.p 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 )
4 prjcrv0.n ( 𝜑𝑁 ∈ ℕ0 )
5 prjcrv0.k ( 𝜑𝐾 ∈ Field )
6 eqid ( ( 0 ... 𝑁 ) mHomP 𝐾 ) = ( ( 0 ... 𝑁 ) mHomP 𝐾 )
7 eqid ( ( 0 ... 𝑁 ) eval 𝐾 ) = ( ( 0 ... 𝑁 ) eval 𝐾 )
8 eqid ( 0g𝐾 ) = ( 0g𝐾 )
9 fvssunirn ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) ⊆ ran ( ( 0 ... 𝑁 ) mHomP 𝐾 )
10 eqid { ∈ ( ℕ0m ( 0 ... 𝑁 ) ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m ( 0 ... 𝑁 ) ) ∣ ( “ ℕ ) ∈ Fin }
11 ovexd ( 𝜑 → ( 0 ... 𝑁 ) ∈ V )
12 5 fldcrngd ( 𝜑𝐾 ∈ CRing )
13 12 crnggrpd ( 𝜑𝐾 ∈ Grp )
14 1 10 8 2 11 13 mpl0 ( 𝜑0 = ( { ∈ ( ℕ0m ( 0 ... 𝑁 ) ) ∣ ( “ ℕ ) ∈ Fin } × { ( 0g𝐾 ) } ) )
15 6 8 10 11 13 4 mhp0cl ( 𝜑 → ( { ∈ ( ℕ0m ( 0 ... 𝑁 ) ) ∣ ( “ ℕ ) ∈ Fin } × { ( 0g𝐾 ) } ) ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) )
16 14 15 eqeltrd ( 𝜑0 ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) )
17 9 16 sselid ( 𝜑0 ran ( ( 0 ... 𝑁 ) mHomP 𝐾 ) )
18 6 7 3 8 4 5 17 prjcrvval ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = { 𝑝𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g𝐾 ) } } )
19 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
20 ovexd ( ( 𝜑𝑝𝑃 ) → ( 0 ... 𝑁 ) ∈ V )
21 12 adantr ( ( 𝜑𝑝𝑃 ) → 𝐾 ∈ CRing )
22 7 19 1 8 2 20 21 evl0 ( ( 𝜑𝑝𝑃 ) → ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) = ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g𝐾 ) } ) )
23 22 imaeq1d ( ( 𝜑𝑝𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g𝐾 ) } ) “ 𝑝 ) )
24 eqid ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) = ( 𝐾 freeLMod ( 0 ... 𝑁 ) )
25 eqid ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) = ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } )
26 5 flddrngd ( 𝜑𝐾 ∈ DivRing )
27 3 24 25 4 26 prjspnssbas ( 𝜑𝑃 ⊆ 𝒫 ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) )
28 eqid { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g𝐾 ) } = { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g𝐾 ) }
29 24 19 8 28 frlmbas ( ( 𝐾 ∈ Field ∧ ( 0 ... 𝑁 ) ∈ V ) → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) )
30 5 11 29 syl2anc ( 𝜑 → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) )
31 ssrab2 { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g𝐾 ) } ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) )
32 30 31 eqsstrrdi ( 𝜑 → ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
33 32 ssdifssd ( 𝜑 → ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
34 33 sspwd ( 𝜑 → 𝒫 ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ⊆ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
35 27 34 sstrd ( 𝜑𝑃 ⊆ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
36 35 sselda ( ( 𝜑𝑝𝑃 ) → 𝑝 ∈ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
37 36 elpwid ( ( 𝜑𝑝𝑃 ) → 𝑝 ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) )
38 sseqin2 ( 𝑝 ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ↔ ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) = 𝑝 )
39 37 38 sylib ( ( 𝜑𝑝𝑃 ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) = 𝑝 )
40 4 adantr ( ( 𝜑𝑝𝑃 ) → 𝑁 ∈ ℕ0 )
41 26 adantr ( ( 𝜑𝑝𝑃 ) → 𝐾 ∈ DivRing )
42 simpr ( ( 𝜑𝑝𝑃 ) → 𝑝𝑃 )
43 3 24 25 40 41 42 prjspnn0 ( ( 𝜑𝑝𝑃 ) → 𝑝 ≠ ∅ )
44 39 43 eqnetrd ( ( 𝜑𝑝𝑃 ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ )
45 xpima2 ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g𝐾 ) } ) “ 𝑝 ) = { ( 0g𝐾 ) } )
46 44 45 syl ( ( 𝜑𝑝𝑃 ) → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g𝐾 ) } ) “ 𝑝 ) = { ( 0g𝐾 ) } )
47 23 46 eqtrd ( ( 𝜑𝑝𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g𝐾 ) } )
48 47 rabeqcda ( 𝜑 → { 𝑝𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g𝐾 ) } } = 𝑃 )
49 18 48 eqtrd ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = 𝑃 )