Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrv0.y |
⊢ 𝑌 = ( ( 0 ... 𝑁 ) mPoly 𝐾 ) |
2 |
|
prjcrv0.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
3 |
|
prjcrv0.p |
⊢ 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) |
4 |
|
prjcrv0.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
prjcrv0.k |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
6 |
|
eqid |
⊢ ( ( 0 ... 𝑁 ) mHomP 𝐾 ) = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) |
7 |
|
eqid |
⊢ ( ( 0 ... 𝑁 ) eval 𝐾 ) = ( ( 0 ... 𝑁 ) eval 𝐾 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
9 |
|
fvssunirn |
⊢ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) ⊆ ∪ ran ( ( 0 ... 𝑁 ) mHomP 𝐾 ) |
10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
12 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
13 |
12
|
crnggrpd |
⊢ ( 𝜑 → 𝐾 ∈ Grp ) |
14 |
1 10 8 2 11 13
|
mpl0 |
⊢ ( 𝜑 → 0 = ( { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝐾 ) } ) ) |
15 |
6 8 10 11 13 4
|
mhp0cl |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝑁 ) ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝐾 ) } ) ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) ) |
16 |
14 15
|
eqeltrd |
⊢ ( 𝜑 → 0 ∈ ( ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ‘ 𝑁 ) ) |
17 |
9 16
|
sselid |
⊢ ( 𝜑 → 0 ∈ ∪ ran ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
18 |
6 7 3 8 4 5 17
|
prjcrvval |
⊢ ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } } ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 0 ... 𝑁 ) ∈ V ) |
21 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ∈ CRing ) |
22 |
7 19 1 8 2 20 21
|
evl0 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) = ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) ) |
23 |
22
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) ) |
24 |
|
eqid |
⊢ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) = ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) |
25 |
|
eqid |
⊢ ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) = ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) |
26 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
27 |
3 24 25 4 26
|
prjspnssbas |
⊢ ( 𝜑 → 𝑃 ⊆ 𝒫 ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ) |
28 |
|
eqid |
⊢ { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } |
29 |
24 19 8 28
|
frlmbas |
⊢ ( ( 𝐾 ∈ Field ∧ ( 0 ... 𝑁 ) ∈ V ) → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
30 |
5 11 29
|
syl2anc |
⊢ ( 𝜑 → { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } = ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ) |
31 |
|
ssrab2 |
⊢ { 𝑘 ∈ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∣ 𝑘 finSupp ( 0g ‘ 𝐾 ) } ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) |
32 |
30 31
|
eqsstrrdi |
⊢ ( 𝜑 → ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
33 |
32
|
ssdifssd |
⊢ ( 𝜑 → ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
34 |
33
|
sspwd |
⊢ ( 𝜑 → 𝒫 ( ( Base ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) ∖ { ( 0g ‘ ( 𝐾 freeLMod ( 0 ... 𝑁 ) ) ) } ) ⊆ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
35 |
27 34
|
sstrd |
⊢ ( 𝜑 → 𝑃 ⊆ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
36 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝒫 ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
37 |
36
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ) |
38 |
|
sseqin2 |
⊢ ( 𝑝 ⊆ ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ↔ ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) = 𝑝 ) |
39 |
37 38
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) = 𝑝 ) |
40 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑁 ∈ ℕ0 ) |
41 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ∈ DivRing ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) |
43 |
3 24 25 40 41 42
|
prjspnn0 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ≠ ∅ ) |
44 |
39 43
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ ) |
45 |
|
xpima2 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) ∩ 𝑝 ) ≠ ∅ → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( Base ‘ 𝐾 ) ↑m ( 0 ... 𝑁 ) ) × { ( 0g ‘ 𝐾 ) } ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
47 |
23 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } ) |
48 |
47
|
rabeqcda |
⊢ ( 𝜑 → { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 0 ... 𝑁 ) eval 𝐾 ) ‘ 0 ) “ 𝑝 ) = { ( 0g ‘ 𝐾 ) } } = 𝑃 ) |
49 |
18 48
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) ‘ 0 ) = 𝑃 ) |