Step |
Hyp |
Ref |
Expression |
1 |
|
evl0.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
2 |
|
evl0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
evl0.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
4 |
|
evl0.o |
⊢ 𝑂 = ( 0g ‘ 𝑅 ) |
5 |
|
evl0.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
6 |
|
evl0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
evl0.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
9 |
3 8 4 5 6 7
|
mplascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = 0 ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( 𝑄 ‘ 0 ) ) |
11 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
2 4
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ 𝐵 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) |
14 |
1 3 2 8 6 7 13
|
evlsca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑂 } ) ) |
15 |
10 14
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑂 } ) ) |