Metamath Proof Explorer


Theorem evl0

Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses evl0.q 𝑄 = ( 𝐼 eval 𝑅 )
evl0.b 𝐵 = ( Base ‘ 𝑅 )
evl0.w 𝑊 = ( 𝐼 mPoly 𝑅 )
evl0.o 𝑂 = ( 0g𝑅 )
evl0.0 0 = ( 0g𝑊 )
evl0.i ( 𝜑𝐼𝑉 )
evl0.r ( 𝜑𝑅 ∈ CRing )
Assertion evl0 ( 𝜑 → ( 𝑄0 ) = ( ( 𝐵m 𝐼 ) × { 𝑂 } ) )

Proof

Step Hyp Ref Expression
1 evl0.q 𝑄 = ( 𝐼 eval 𝑅 )
2 evl0.b 𝐵 = ( Base ‘ 𝑅 )
3 evl0.w 𝑊 = ( 𝐼 mPoly 𝑅 )
4 evl0.o 𝑂 = ( 0g𝑅 )
5 evl0.0 0 = ( 0g𝑊 )
6 evl0.i ( 𝜑𝐼𝑉 )
7 evl0.r ( 𝜑𝑅 ∈ CRing )
8 eqid ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 )
9 3 8 4 5 6 7 mplascl0 ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = 0 )
10 9 fveq2d ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( 𝑄0 ) )
11 7 crngringd ( 𝜑𝑅 ∈ Ring )
12 2 4 ring0cl ( 𝑅 ∈ Ring → 𝑂𝐵 )
13 11 12 syl ( 𝜑𝑂𝐵 )
14 1 3 2 8 6 7 13 evlsca ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( ( 𝐵m 𝐼 ) × { 𝑂 } ) )
15 10 14 eqtr3d ( 𝜑 → ( 𝑄0 ) = ( ( 𝐵m 𝐼 ) × { 𝑂 } ) )