Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
evl0
Next ⟩
evlsval3
Metamath Proof Explorer
Ascii
Unicode
Theorem
evl0
Description:
The zero polynomial evaluates to zero.
(Contributed by
SN
, 23-Nov-2024)
Ref
Expression
Hypotheses
evl0.q
⊢
Q
=
I
eval
R
evl0.b
⊢
B
=
Base
R
evl0.w
⊢
W
=
I
mPoly
R
evl0.o
⊢
O
=
0
R
evl0.0
⊢
0
˙
=
0
W
evl0.i
⊢
φ
→
I
∈
V
evl0.r
⊢
φ
→
R
∈
CRing
Assertion
evl0
⊢
φ
→
Q
⁡
0
˙
=
B
I
×
O
Proof
Step
Hyp
Ref
Expression
1
evl0.q
⊢
Q
=
I
eval
R
2
evl0.b
⊢
B
=
Base
R
3
evl0.w
⊢
W
=
I
mPoly
R
4
evl0.o
⊢
O
=
0
R
5
evl0.0
⊢
0
˙
=
0
W
6
evl0.i
⊢
φ
→
I
∈
V
7
evl0.r
⊢
φ
→
R
∈
CRing
8
eqid
⊢
algSc
⁡
W
=
algSc
⁡
W
9
3
8
4
5
6
7
mplascl0
⊢
φ
→
algSc
⁡
W
⁡
O
=
0
˙
10
9
fveq2d
⊢
φ
→
Q
⁡
algSc
⁡
W
⁡
O
=
Q
⁡
0
˙
11
7
crngringd
⊢
φ
→
R
∈
Ring
12
2
4
ring0cl
⊢
R
∈
Ring
→
O
∈
B
13
11
12
syl
⊢
φ
→
O
∈
B
14
1
3
2
8
6
7
13
evlsca
⊢
φ
→
Q
⁡
algSc
⁡
W
⁡
O
=
B
I
×
O
15
10
14
eqtr3d
⊢
φ
→
Q
⁡
0
˙
=
B
I
×
O