| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl0.q |
|- Q = ( I eval R ) |
| 2 |
|
evl0.b |
|- B = ( Base ` R ) |
| 3 |
|
evl0.w |
|- W = ( I mPoly R ) |
| 4 |
|
evl0.o |
|- O = ( 0g ` R ) |
| 5 |
|
evl0.0 |
|- .0. = ( 0g ` W ) |
| 6 |
|
evl0.i |
|- ( ph -> I e. V ) |
| 7 |
|
evl0.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
| 9 |
7
|
crngringd |
|- ( ph -> R e. Ring ) |
| 10 |
3 8 4 5 6 9
|
mplascl0 |
|- ( ph -> ( ( algSc ` W ) ` O ) = .0. ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( Q ` .0. ) ) |
| 12 |
2 4
|
ring0cl |
|- ( R e. Ring -> O e. B ) |
| 13 |
9 12
|
syl |
|- ( ph -> O e. B ) |
| 14 |
1 3 2 8 6 7 13
|
evlsca |
|- ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( ( B ^m I ) X. { O } ) ) |
| 15 |
11 14
|
eqtr3d |
|- ( ph -> ( Q ` .0. ) = ( ( B ^m I ) X. { O } ) ) |