Metamath Proof Explorer


Theorem evl0

Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses evl0.q
|- Q = ( I eval R )
evl0.b
|- B = ( Base ` R )
evl0.w
|- W = ( I mPoly R )
evl0.o
|- O = ( 0g ` R )
evl0.0
|- .0. = ( 0g ` W )
evl0.i
|- ( ph -> I e. V )
evl0.r
|- ( ph -> R e. CRing )
Assertion evl0
|- ( ph -> ( Q ` .0. ) = ( ( B ^m I ) X. { O } ) )

Proof

Step Hyp Ref Expression
1 evl0.q
 |-  Q = ( I eval R )
2 evl0.b
 |-  B = ( Base ` R )
3 evl0.w
 |-  W = ( I mPoly R )
4 evl0.o
 |-  O = ( 0g ` R )
5 evl0.0
 |-  .0. = ( 0g ` W )
6 evl0.i
 |-  ( ph -> I e. V )
7 evl0.r
 |-  ( ph -> R e. CRing )
8 eqid
 |-  ( algSc ` W ) = ( algSc ` W )
9 3 8 4 5 6 7 mplascl0
 |-  ( ph -> ( ( algSc ` W ) ` O ) = .0. )
10 9 fveq2d
 |-  ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( Q ` .0. ) )
11 7 crngringd
 |-  ( ph -> R e. Ring )
12 2 4 ring0cl
 |-  ( R e. Ring -> O e. B )
13 11 12 syl
 |-  ( ph -> O e. B )
14 1 3 2 8 6 7 13 evlsca
 |-  ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( ( B ^m I ) X. { O } ) )
15 10 14 eqtr3d
 |-  ( ph -> ( Q ` .0. ) = ( ( B ^m I ) X. { O } ) )