Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrv0.y |
|- Y = ( ( 0 ... N ) mPoly K ) |
2 |
|
prjcrv0.0 |
|- .0. = ( 0g ` Y ) |
3 |
|
prjcrv0.p |
|- P = ( N PrjSpn K ) |
4 |
|
prjcrv0.n |
|- ( ph -> N e. NN0 ) |
5 |
|
prjcrv0.k |
|- ( ph -> K e. Field ) |
6 |
|
eqid |
|- ( ( 0 ... N ) mHomP K ) = ( ( 0 ... N ) mHomP K ) |
7 |
|
eqid |
|- ( ( 0 ... N ) eval K ) = ( ( 0 ... N ) eval K ) |
8 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
9 |
|
fvssunirn |
|- ( ( ( 0 ... N ) mHomP K ) ` N ) C_ U. ran ( ( 0 ... N ) mHomP K ) |
10 |
|
eqid |
|- { h e. ( NN0 ^m ( 0 ... N ) ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m ( 0 ... N ) ) | ( `' h " NN ) e. Fin } |
11 |
|
ovexd |
|- ( ph -> ( 0 ... N ) e. _V ) |
12 |
5
|
fldcrngd |
|- ( ph -> K e. CRing ) |
13 |
12
|
crnggrpd |
|- ( ph -> K e. Grp ) |
14 |
1 10 8 2 11 13
|
mpl0 |
|- ( ph -> .0. = ( { h e. ( NN0 ^m ( 0 ... N ) ) | ( `' h " NN ) e. Fin } X. { ( 0g ` K ) } ) ) |
15 |
6 8 10 11 13 4
|
mhp0cl |
|- ( ph -> ( { h e. ( NN0 ^m ( 0 ... N ) ) | ( `' h " NN ) e. Fin } X. { ( 0g ` K ) } ) e. ( ( ( 0 ... N ) mHomP K ) ` N ) ) |
16 |
14 15
|
eqeltrd |
|- ( ph -> .0. e. ( ( ( 0 ... N ) mHomP K ) ` N ) ) |
17 |
9 16
|
sselid |
|- ( ph -> .0. e. U. ran ( ( 0 ... N ) mHomP K ) ) |
18 |
6 7 3 8 4 5 17
|
prjcrvval |
|- ( ph -> ( ( N PrjCrv K ) ` .0. ) = { p e. P | ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = { ( 0g ` K ) } } ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
|
ovexd |
|- ( ( ph /\ p e. P ) -> ( 0 ... N ) e. _V ) |
21 |
12
|
adantr |
|- ( ( ph /\ p e. P ) -> K e. CRing ) |
22 |
7 19 1 8 2 20 21
|
evl0 |
|- ( ( ph /\ p e. P ) -> ( ( ( 0 ... N ) eval K ) ` .0. ) = ( ( ( Base ` K ) ^m ( 0 ... N ) ) X. { ( 0g ` K ) } ) ) |
23 |
22
|
imaeq1d |
|- ( ( ph /\ p e. P ) -> ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = ( ( ( ( Base ` K ) ^m ( 0 ... N ) ) X. { ( 0g ` K ) } ) " p ) ) |
24 |
|
eqid |
|- ( K freeLMod ( 0 ... N ) ) = ( K freeLMod ( 0 ... N ) ) |
25 |
|
eqid |
|- ( ( Base ` ( K freeLMod ( 0 ... N ) ) ) \ { ( 0g ` ( K freeLMod ( 0 ... N ) ) ) } ) = ( ( Base ` ( K freeLMod ( 0 ... N ) ) ) \ { ( 0g ` ( K freeLMod ( 0 ... N ) ) ) } ) |
26 |
5
|
flddrngd |
|- ( ph -> K e. DivRing ) |
27 |
3 24 25 4 26
|
prjspnssbas |
|- ( ph -> P C_ ~P ( ( Base ` ( K freeLMod ( 0 ... N ) ) ) \ { ( 0g ` ( K freeLMod ( 0 ... N ) ) ) } ) ) |
28 |
|
eqid |
|- { k e. ( ( Base ` K ) ^m ( 0 ... N ) ) | k finSupp ( 0g ` K ) } = { k e. ( ( Base ` K ) ^m ( 0 ... N ) ) | k finSupp ( 0g ` K ) } |
29 |
24 19 8 28
|
frlmbas |
|- ( ( K e. Field /\ ( 0 ... N ) e. _V ) -> { k e. ( ( Base ` K ) ^m ( 0 ... N ) ) | k finSupp ( 0g ` K ) } = ( Base ` ( K freeLMod ( 0 ... N ) ) ) ) |
30 |
5 11 29
|
syl2anc |
|- ( ph -> { k e. ( ( Base ` K ) ^m ( 0 ... N ) ) | k finSupp ( 0g ` K ) } = ( Base ` ( K freeLMod ( 0 ... N ) ) ) ) |
31 |
|
ssrab2 |
|- { k e. ( ( Base ` K ) ^m ( 0 ... N ) ) | k finSupp ( 0g ` K ) } C_ ( ( Base ` K ) ^m ( 0 ... N ) ) |
32 |
30 31
|
eqsstrrdi |
|- ( ph -> ( Base ` ( K freeLMod ( 0 ... N ) ) ) C_ ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
33 |
32
|
ssdifssd |
|- ( ph -> ( ( Base ` ( K freeLMod ( 0 ... N ) ) ) \ { ( 0g ` ( K freeLMod ( 0 ... N ) ) ) } ) C_ ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
34 |
33
|
sspwd |
|- ( ph -> ~P ( ( Base ` ( K freeLMod ( 0 ... N ) ) ) \ { ( 0g ` ( K freeLMod ( 0 ... N ) ) ) } ) C_ ~P ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
35 |
27 34
|
sstrd |
|- ( ph -> P C_ ~P ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
36 |
35
|
sselda |
|- ( ( ph /\ p e. P ) -> p e. ~P ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
37 |
36
|
elpwid |
|- ( ( ph /\ p e. P ) -> p C_ ( ( Base ` K ) ^m ( 0 ... N ) ) ) |
38 |
|
sseqin2 |
|- ( p C_ ( ( Base ` K ) ^m ( 0 ... N ) ) <-> ( ( ( Base ` K ) ^m ( 0 ... N ) ) i^i p ) = p ) |
39 |
37 38
|
sylib |
|- ( ( ph /\ p e. P ) -> ( ( ( Base ` K ) ^m ( 0 ... N ) ) i^i p ) = p ) |
40 |
4
|
adantr |
|- ( ( ph /\ p e. P ) -> N e. NN0 ) |
41 |
26
|
adantr |
|- ( ( ph /\ p e. P ) -> K e. DivRing ) |
42 |
|
simpr |
|- ( ( ph /\ p e. P ) -> p e. P ) |
43 |
3 24 25 40 41 42
|
prjspnn0 |
|- ( ( ph /\ p e. P ) -> p =/= (/) ) |
44 |
39 43
|
eqnetrd |
|- ( ( ph /\ p e. P ) -> ( ( ( Base ` K ) ^m ( 0 ... N ) ) i^i p ) =/= (/) ) |
45 |
|
xpima2 |
|- ( ( ( ( Base ` K ) ^m ( 0 ... N ) ) i^i p ) =/= (/) -> ( ( ( ( Base ` K ) ^m ( 0 ... N ) ) X. { ( 0g ` K ) } ) " p ) = { ( 0g ` K ) } ) |
46 |
44 45
|
syl |
|- ( ( ph /\ p e. P ) -> ( ( ( ( Base ` K ) ^m ( 0 ... N ) ) X. { ( 0g ` K ) } ) " p ) = { ( 0g ` K ) } ) |
47 |
23 46
|
eqtrd |
|- ( ( ph /\ p e. P ) -> ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = { ( 0g ` K ) } ) |
48 |
47
|
rabeqcda |
|- ( ph -> { p e. P | ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = { ( 0g ` K ) } } = P ) |
49 |
18 48
|
eqtrd |
|- ( ph -> ( ( N PrjCrv K ) ` .0. ) = P ) |