Step |
Hyp |
Ref |
Expression |
1 |
|
prjcrvfval.h |
⊢ 𝐻 = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) |
2 |
|
prjcrvfval.e |
⊢ 𝐸 = ( ( 0 ... 𝑁 ) eval 𝐾 ) |
3 |
|
prjcrvfval.p |
⊢ 𝑃 = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) |
4 |
|
prjcrvfval.0 |
⊢ 0 = ( 0g ‘ 𝐾 ) |
5 |
|
prjcrvfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
prjcrvfval.k |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
8 |
|
oveq12 |
⊢ ( ( ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ∧ 𝑘 = 𝐾 ) → ( ( 0 ... 𝑛 ) mHomP 𝑘 ) = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( 0 ... 𝑛 ) mHomP 𝑘 ) = ( ( 0 ... 𝑁 ) mHomP 𝐾 ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( 0 ... 𝑛 ) mHomP 𝑘 ) = 𝐻 ) |
11 |
10
|
rneqd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) = ran 𝐻 ) |
12 |
11
|
unieqd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) = ∪ ran 𝐻 ) |
13 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) = ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) = 𝑃 ) |
15 |
|
id |
⊢ ( 𝑘 = 𝐾 → 𝑘 = 𝐾 ) |
16 |
7 15
|
oveqan12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( 0 ... 𝑛 ) eval 𝑘 ) = ( ( 0 ... 𝑁 ) eval 𝐾 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( 0 ... 𝑛 ) eval 𝑘 ) = 𝐸 ) |
18 |
17
|
fveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) = ( 𝐸 ‘ 𝑓 ) ) |
19 |
18
|
imaeq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 0g ‘ 𝑘 ) = ( 0g ‘ 𝐾 ) ) |
21 |
20 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( 0g ‘ 𝑘 ) = 0 ) |
22 |
21
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( 0g ‘ 𝑘 ) = 0 ) |
23 |
22
|
sneqd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → { ( 0g ‘ 𝑘 ) } = { 0 } ) |
24 |
19 23
|
eqeq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } ↔ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } ) ) |
25 |
14 24
|
rabeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) |
26 |
12 25
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 = 𝐾 ) → ( 𝑓 ∈ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } ) = ( 𝑓 ∈ ∪ ran 𝐻 ↦ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) ) |
27 |
|
df-prjcrv |
⊢ ℙ𝕣𝕠𝕛Crv = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ Field ↦ ( 𝑓 ∈ ∪ ran ( ( 0 ... 𝑛 ) mHomP 𝑘 ) ↦ { 𝑝 ∈ ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 ) ∣ ( ( ( ( 0 ... 𝑛 ) eval 𝑘 ) ‘ 𝑓 ) “ 𝑝 ) = { ( 0g ‘ 𝑘 ) } } ) ) |
28 |
1
|
ovexi |
⊢ 𝐻 ∈ V |
29 |
28
|
rnex |
⊢ ran 𝐻 ∈ V |
30 |
29
|
uniex |
⊢ ∪ ran 𝐻 ∈ V |
31 |
30
|
mptex |
⊢ ( 𝑓 ∈ ∪ ran 𝐻 ↦ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) ∈ V |
32 |
26 27 31
|
ovmpoa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ Field ) → ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) = ( 𝑓 ∈ ∪ ran 𝐻 ↦ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) ) |
33 |
5 6 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 ) = ( 𝑓 ∈ ∪ ran 𝐻 ↦ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐸 ‘ 𝑓 ) “ 𝑝 ) = { 0 } } ) ) |