| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjcrvfval.h | ⊢ 𝐻  =  ( ( 0 ... 𝑁 )  mHomP  𝐾 ) | 
						
							| 2 |  | prjcrvfval.e | ⊢ 𝐸  =  ( ( 0 ... 𝑁 )  eval  𝐾 ) | 
						
							| 3 |  | prjcrvfval.p | ⊢ 𝑃  =  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) | 
						
							| 4 |  | prjcrvfval.0 | ⊢  0   =  ( 0g ‘ 𝐾 ) | 
						
							| 5 |  | prjcrvfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | prjcrvfval.k | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 8 |  | oveq12 | ⊢ ( ( ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 )  ∧  𝑘  =  𝐾 )  →  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  =  ( ( 0 ... 𝑁 )  mHomP  𝐾 ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  =  ( ( 0 ... 𝑁 )  mHomP  𝐾 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  =  𝐻 ) | 
						
							| 11 | 10 | rneqd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ran  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  =  ran  𝐻 ) | 
						
							| 12 | 11 | unieqd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ∪  ran  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  =  ∪  ran  𝐻 ) | 
						
							| 13 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )  =  ( 𝑁 ℙ𝕣𝕠𝕛n 𝐾 ) ) | 
						
							| 14 | 13 3 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )  =  𝑃 ) | 
						
							| 15 |  | id | ⊢ ( 𝑘  =  𝐾  →  𝑘  =  𝐾 ) | 
						
							| 16 | 7 15 | oveqan12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( 0 ... 𝑛 )  eval  𝑘 )  =  ( ( 0 ... 𝑁 )  eval  𝐾 ) ) | 
						
							| 17 | 16 2 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( 0 ... 𝑛 )  eval  𝑘 )  =  𝐸 ) | 
						
							| 18 | 17 | fveq1d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  =  ( 𝐸 ‘ 𝑓 ) ) | 
						
							| 19 | 18 | imaeq1d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  “  𝑝 )  =  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 0g ‘ 𝑘 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 21 | 20 4 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( 0g ‘ 𝑘 )  =   0  ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( 0g ‘ 𝑘 )  =   0  ) | 
						
							| 23 | 22 | sneqd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  { ( 0g ‘ 𝑘 ) }  =  {  0  } ) | 
						
							| 24 | 19 23 | eqeq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( ( ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  “  𝑝 )  =  { ( 0g ‘ 𝑘 ) }  ↔  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } ) ) | 
						
							| 25 | 14 24 | rabeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  { 𝑝  ∈  ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )  ∣  ( ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  “  𝑝 )  =  { ( 0g ‘ 𝑘 ) } }  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } ) | 
						
							| 26 | 12 25 | mpteq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑘  =  𝐾 )  →  ( 𝑓  ∈  ∪  ran  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  ↦  { 𝑝  ∈  ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )  ∣  ( ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  “  𝑝 )  =  { ( 0g ‘ 𝑘 ) } } )  =  ( 𝑓  ∈  ∪  ran  𝐻  ↦  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } ) ) | 
						
							| 27 |  | df-prjcrv | ⊢ ℙ𝕣𝕠𝕛Crv  =  ( 𝑛  ∈  ℕ0 ,  𝑘  ∈  Field  ↦  ( 𝑓  ∈  ∪  ran  ( ( 0 ... 𝑛 )  mHomP  𝑘 )  ↦  { 𝑝  ∈  ( 𝑛 ℙ𝕣𝕠𝕛n 𝑘 )  ∣  ( ( ( ( 0 ... 𝑛 )  eval  𝑘 ) ‘ 𝑓 )  “  𝑝 )  =  { ( 0g ‘ 𝑘 ) } } ) ) | 
						
							| 28 | 1 | ovexi | ⊢ 𝐻  ∈  V | 
						
							| 29 | 28 | rnex | ⊢ ran  𝐻  ∈  V | 
						
							| 30 | 29 | uniex | ⊢ ∪  ran  𝐻  ∈  V | 
						
							| 31 | 30 | mptex | ⊢ ( 𝑓  ∈  ∪  ran  𝐻  ↦  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } )  ∈  V | 
						
							| 32 | 26 27 31 | ovmpoa | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  Field )  →  ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 )  =  ( 𝑓  ∈  ∪  ran  𝐻  ↦  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } ) ) | 
						
							| 33 | 5 6 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ℙ𝕣𝕠𝕛Crv 𝐾 )  =  ( 𝑓  ∈  ∪  ran  𝐻  ↦  { 𝑝  ∈  𝑃  ∣  ( ( 𝐸 ‘ 𝑓 )  “  𝑝 )  =  {  0  } } ) ) |