| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cust |
⊢ UnifOn |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vu |
⊢ 𝑢 |
| 4 |
3
|
cv |
⊢ 𝑢 |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5 5
|
cxp |
⊢ ( 𝑥 × 𝑥 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( 𝑥 × 𝑥 ) |
| 8 |
4 7
|
wss |
⊢ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) |
| 9 |
6 4
|
wcel |
⊢ ( 𝑥 × 𝑥 ) ∈ 𝑢 |
| 10 |
|
vv |
⊢ 𝑣 |
| 11 |
|
vw |
⊢ 𝑤 |
| 12 |
10
|
cv |
⊢ 𝑣 |
| 13 |
11
|
cv |
⊢ 𝑤 |
| 14 |
12 13
|
wss |
⊢ 𝑣 ⊆ 𝑤 |
| 15 |
13 4
|
wcel |
⊢ 𝑤 ∈ 𝑢 |
| 16 |
14 15
|
wi |
⊢ ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) |
| 17 |
16 11 7
|
wral |
⊢ ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) |
| 18 |
12 13
|
cin |
⊢ ( 𝑣 ∩ 𝑤 ) |
| 19 |
18 4
|
wcel |
⊢ ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 |
| 20 |
19 11 4
|
wral |
⊢ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 |
| 21 |
|
cid |
⊢ I |
| 22 |
21 5
|
cres |
⊢ ( I ↾ 𝑥 ) |
| 23 |
22 12
|
wss |
⊢ ( I ↾ 𝑥 ) ⊆ 𝑣 |
| 24 |
12
|
ccnv |
⊢ ◡ 𝑣 |
| 25 |
24 4
|
wcel |
⊢ ◡ 𝑣 ∈ 𝑢 |
| 26 |
13 13
|
ccom |
⊢ ( 𝑤 ∘ 𝑤 ) |
| 27 |
26 12
|
wss |
⊢ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 |
| 28 |
27 11 4
|
wrex |
⊢ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 |
| 29 |
23 25 28
|
w3a |
⊢ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) |
| 30 |
17 20 29
|
w3a |
⊢ ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 31 |
30 10 4
|
wral |
⊢ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 32 |
8 9 31
|
w3a |
⊢ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 33 |
32 3
|
cab |
⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } |
| 34 |
1 2 33
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| 35 |
0 34
|
wceq |
⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |