Metamath Proof Explorer


Definition df-ust

Description: Definition of a uniform structure. Definition 1 of BourbakiTop1 p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn . Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014) (Revised by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion df-ust UnifOn=xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv

Detailed syntax breakdown

Step Hyp Ref Expression
0 cust classUnifOn
1 vx setvarx
2 cvv classV
3 vu setvaru
4 3 cv setvaru
5 1 cv setvarx
6 5 5 cxp classx×x
7 6 cpw class𝒫x×x
8 4 7 wss wffu𝒫x×x
9 6 4 wcel wffx×xu
10 vv setvarv
11 vw setvarw
12 10 cv setvarv
13 11 cv setvarw
14 12 13 wss wffvw
15 13 4 wcel wffwu
16 14 15 wi wffvwwu
17 16 11 7 wral wffw𝒫x×xvwwu
18 12 13 cin classvw
19 18 4 wcel wffvwu
20 19 11 4 wral wffwuvwu
21 cid classI
22 21 5 cres classIx
23 22 12 wss wffIxv
24 12 ccnv classv-1
25 24 4 wcel wffv-1u
26 13 13 ccom classww
27 26 12 wss wffwwv
28 27 11 4 wrex wffwuwwv
29 23 25 28 w3a wffIxvv-1uwuwwv
30 17 20 29 w3a wffw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
31 30 10 4 wral wffvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
32 8 9 31 w3a wffu𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
33 32 3 cab classu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
34 1 2 33 cmpt classxVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
35 0 34 wceq wffUnifOn=xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv