Metamath Proof Explorer


Theorem ustfn

Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion ustfn UnifOn Fn V

Proof

Step Hyp Ref Expression
1 velpw u 𝒫 𝒫 x × x u 𝒫 x × x
2 1 abbii u | u 𝒫 𝒫 x × x = u | u 𝒫 x × x
3 abid2 u | u 𝒫 𝒫 x × x = 𝒫 𝒫 x × x
4 vex x V
5 4 4 xpex x × x V
6 5 pwex 𝒫 x × x V
7 6 pwex 𝒫 𝒫 x × x V
8 3 7 eqeltri u | u 𝒫 𝒫 x × x V
9 2 8 eqeltrri u | u 𝒫 x × x V
10 simp1 u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v u 𝒫 x × x
11 10 ss2abi u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v u | u 𝒫 x × x
12 9 11 ssexi u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v V
13 df-ust UnifOn = x V u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
14 12 13 fnmpti UnifOn Fn V