Metamath Proof Explorer


Definition df-vhc3

Description: Definition of a 3-element virtual hypotheses collection. (Contributed by Alan Sare, 13-Jun-2015) (New usage is discouraged.)

Ref Expression
Assertion df-vhc3 ( (    𝜑    ,    𝜓    ,    𝜒    ) ↔ ( 𝜑𝜓𝜒 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph 𝜑
1 wps 𝜓
2 wch 𝜒
3 0 1 2 wvhc3 (    𝜑    ,    𝜓    ,    𝜒    )
4 0 1 2 w3a ( 𝜑𝜓𝜒 )
5 3 4 wb ( (    𝜑    ,    𝜓    ,    𝜒    ) ↔ ( 𝜑𝜓𝜒 ) )