Metamath Proof Explorer


Theorem dfac13

Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion dfac13 ( CHOICE ↔ ∀ 𝑥 𝑥AC 𝑥 )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 acacni ( ( CHOICE𝑥 ∈ V ) → AC 𝑥 = V )
3 2 elvd ( CHOICEAC 𝑥 = V )
4 1 3 eleqtrrid ( CHOICE𝑥AC 𝑥 )
5 4 alrimiv ( CHOICE → ∀ 𝑥 𝑥AC 𝑥 )
6 vpwex 𝒫 𝑧 ∈ V
7 id ( 𝑥 = 𝒫 𝑧𝑥 = 𝒫 𝑧 )
8 acneq ( 𝑥 = 𝒫 𝑧AC 𝑥 = AC 𝒫 𝑧 )
9 7 8 eleq12d ( 𝑥 = 𝒫 𝑧 → ( 𝑥AC 𝑥 ↔ 𝒫 𝑧AC 𝒫 𝑧 ) )
10 6 9 spcv ( ∀ 𝑥 𝑥AC 𝑥 → 𝒫 𝑧AC 𝒫 𝑧 )
11 vex 𝑦 ∈ V
12 vex 𝑧 ∈ V
13 12 canth2 𝑧 ≺ 𝒫 𝑧
14 sdomdom ( 𝑧 ≺ 𝒫 𝑧𝑧 ≼ 𝒫 𝑧 )
15 acndom2 ( 𝑧 ≼ 𝒫 𝑧 → ( 𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧 ) )
16 13 14 15 mp2b ( 𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧 )
17 acnnum ( 𝑧AC 𝒫 𝑧𝑧 ∈ dom card )
18 16 17 sylib ( 𝒫 𝑧AC 𝒫 𝑧𝑧 ∈ dom card )
19 numacn ( 𝑦 ∈ V → ( 𝑧 ∈ dom card → 𝑧AC 𝑦 ) )
20 11 18 19 mpsyl ( 𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝑦 )
21 10 20 syl ( ∀ 𝑥 𝑥AC 𝑥𝑧AC 𝑦 )
22 12 a1i ( ∀ 𝑥 𝑥AC 𝑥𝑧 ∈ V )
23 21 22 2thd ( ∀ 𝑥 𝑥AC 𝑥 → ( 𝑧AC 𝑦𝑧 ∈ V ) )
24 23 eqrdv ( ∀ 𝑥 𝑥AC 𝑥AC 𝑦 = V )
25 24 alrimiv ( ∀ 𝑥 𝑥AC 𝑥 → ∀ 𝑦 AC 𝑦 = V )
26 dfacacn ( CHOICE ↔ ∀ 𝑦 AC 𝑦 = V )
27 25 26 sylibr ( ∀ 𝑥 𝑥AC 𝑥CHOICE )
28 5 27 impbii ( CHOICE ↔ ∀ 𝑥 𝑥AC 𝑥 )