| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑋 ∈ dom card ) |
| 3 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 4 |
3
|
adantl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 5 |
4
|
frnd |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 6 |
5
|
difss2d |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ 𝒫 𝑋 ) |
| 7 |
|
sspwuni |
⊢ ( ran 𝑓 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝑓 ⊆ 𝑋 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 9 |
|
ssnum |
⊢ ( ( 𝑋 ∈ dom card ∧ ∪ ran 𝑓 ⊆ 𝑋 ) → ∪ ran 𝑓 ∈ dom card ) |
| 10 |
2 8 9
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ∈ dom card ) |
| 11 |
|
ssdifin0 |
⊢ ( ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) |
| 12 |
5 11
|
syl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) |
| 13 |
|
disjsn |
⊢ ( ( ran 𝑓 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ran 𝑓 ) |
| 14 |
12 13
|
sylib |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ¬ ∅ ∈ ran 𝑓 ) |
| 15 |
|
ac5num |
⊢ ( ( ∪ ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓 ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 16 |
10 14 15
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 17 |
|
simpllr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝐴 ∈ V ) |
| 18 |
4
|
ffnd |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 Fn 𝐴 ) |
| 19 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ℎ ‘ 𝑦 ) = ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 20 |
|
id |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → 𝑦 = ( 𝑓 ‘ 𝑥 ) ) |
| 21 |
19 20
|
eleq12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 22 |
21
|
ralrn |
⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 23 |
18 22
|
syl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 25 |
24
|
adantrl |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 26 |
|
acnlem |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 27 |
17 25 26
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 28 |
16 27
|
exlimddv |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 30 |
|
isacn |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 31 |
29 30
|
mpbird |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → 𝑋 ∈ AC 𝐴 ) |
| 32 |
31
|
expcom |
⊢ ( 𝐴 ∈ V → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |
| 33 |
1 32
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |