Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
2 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑋 ∈ dom card ) |
3 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
5 |
4
|
frnd |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
6 |
5
|
difss2d |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ 𝒫 𝑋 ) |
7 |
|
sspwuni |
⊢ ( ran 𝑓 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝑓 ⊆ 𝑋 ) |
8 |
6 7
|
sylib |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
9 |
|
ssnum |
⊢ ( ( 𝑋 ∈ dom card ∧ ∪ ran 𝑓 ⊆ 𝑋 ) → ∪ ran 𝑓 ∈ dom card ) |
10 |
2 8 9
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ∈ dom card ) |
11 |
|
ssdifin0 |
⊢ ( ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) |
12 |
5 11
|
syl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) |
13 |
|
disjsn |
⊢ ( ( ran 𝑓 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ran 𝑓 ) |
14 |
12 13
|
sylib |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ¬ ∅ ∈ ran 𝑓 ) |
15 |
|
ac5num |
⊢ ( ( ∪ ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓 ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) |
16 |
10 14 15
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) |
17 |
|
simpllr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝐴 ∈ V ) |
18 |
4
|
ffnd |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 Fn 𝐴 ) |
19 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ℎ ‘ 𝑦 ) = ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
20 |
|
id |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → 𝑦 = ( 𝑓 ‘ 𝑥 ) ) |
21 |
19 20
|
eleq12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
22 |
21
|
ralrn |
⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
23 |
18 22
|
syl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
24 |
23
|
biimpa |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
25 |
24
|
adantrl |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
26 |
|
acnlem |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
27 |
17 25 26
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
28 |
16 27
|
exlimddv |
⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
30 |
|
isacn |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
31 |
29 30
|
mpbird |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → 𝑋 ∈ AC 𝐴 ) |
32 |
31
|
expcom |
⊢ ( 𝐴 ∈ V → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |
33 |
1 32
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |