| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acacni |
⊢ ( ( CHOICE ∧ 𝑥 ∈ V ) → AC 𝑥 = V ) |
| 2 |
1
|
elvd |
⊢ ( CHOICE → AC 𝑥 = V ) |
| 3 |
2
|
alrimiv |
⊢ ( CHOICE → ∀ 𝑥 AC 𝑥 = V ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4
|
difexi |
⊢ ( 𝑦 ∖ { ∅ } ) ∈ V |
| 6 |
|
acneq |
⊢ ( 𝑥 = ( 𝑦 ∖ { ∅ } ) → AC 𝑥 = AC ( 𝑦 ∖ { ∅ } ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 ∖ { ∅ } ) → ( AC 𝑥 = V ↔ AC ( 𝑦 ∖ { ∅ } ) = V ) ) |
| 8 |
5 7
|
spcv |
⊢ ( ∀ 𝑥 AC 𝑥 = V → AC ( 𝑦 ∖ { ∅ } ) = V ) |
| 9 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
| 10 |
|
id |
⊢ ( AC ( 𝑦 ∖ { ∅ } ) = V → AC ( 𝑦 ∖ { ∅ } ) = V ) |
| 11 |
9 10
|
eleqtrrid |
⊢ ( AC ( 𝑦 ∖ { ∅ } ) = V → ∪ 𝑦 ∈ AC ( 𝑦 ∖ { ∅ } ) ) |
| 12 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → 𝑧 ∈ 𝑦 ) |
| 13 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → 𝑧 ⊆ ∪ 𝑦 ) |
| 15 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → 𝑧 ≠ ∅ ) |
| 16 |
14 15
|
jca |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( 𝑧 ⊆ ∪ 𝑦 ∧ 𝑧 ≠ ∅ ) ) |
| 17 |
16
|
rgen |
⊢ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑧 ⊆ ∪ 𝑦 ∧ 𝑧 ≠ ∅ ) |
| 18 |
|
acni2 |
⊢ ( ( ∪ 𝑦 ∈ AC ( 𝑦 ∖ { ∅ } ) ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑧 ⊆ ∪ 𝑦 ∧ 𝑧 ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 19 |
11 17 18
|
sylancl |
⊢ ( AC ( 𝑦 ∖ { ∅ } ) = V → ∃ 𝑔 ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 20 |
4
|
mptex |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ V |
| 21 |
|
simpr |
⊢ ( ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) |
| 22 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅ ) ) |
| 23 |
22
|
imbi1i |
⊢ ( ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) |
| 26 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑧 ) ∈ V |
| 27 |
24 25 26
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑦 → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 28 |
12 27
|
syl |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 30 |
29
|
pm5.74i |
⊢ ( ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 31 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 32 |
23 30 31
|
3bitr3i |
⊢ ( ( 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 33 |
32
|
ralbii2 |
⊢ ( ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 34 |
21 33
|
sylib |
⊢ ( ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 35 |
|
fvrn0 |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ ( ran 𝑔 ∪ { ∅ } ) |
| 36 |
35
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑦 ( 𝑔 ‘ 𝑥 ) ∈ ( ran 𝑔 ∪ { ∅ } ) |
| 37 |
25
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑔 ‘ 𝑥 ) ∈ ( ran 𝑔 ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) : 𝑦 ⟶ ( ran 𝑔 ∪ { ∅ } ) ) |
| 38 |
36 37
|
mpbi |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) : 𝑦 ⟶ ( ran 𝑔 ∪ { ∅ } ) |
| 39 |
|
ffn |
⊢ ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) : 𝑦 ⟶ ( ran 𝑔 ∪ { ∅ } ) → ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 |
| 41 |
34 40
|
jctil |
⊢ ( ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 42 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( 𝑓 Fn 𝑦 ↔ ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 ) ) |
| 43 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 45 |
44
|
imbi2d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 46 |
45
|
ralbidv |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 47 |
42 46
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) → ( ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 48 |
47
|
spcegv |
⊢ ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ V → ( ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( ( 𝑥 ∈ 𝑦 ↦ ( 𝑔 ‘ 𝑥 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 49 |
20 41 48
|
mpsyl |
⊢ ( ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 50 |
49
|
exlimiv |
⊢ ( ∃ 𝑔 ( 𝑔 : ( 𝑦 ∖ { ∅ } ) ⟶ ∪ 𝑦 ∧ ∀ 𝑧 ∈ ( 𝑦 ∖ { ∅ } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 51 |
8 19 50
|
3syl |
⊢ ( ∀ 𝑥 AC 𝑥 = V → ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 52 |
51
|
alrimiv |
⊢ ( ∀ 𝑥 AC 𝑥 = V → ∀ 𝑦 ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 53 |
|
dfac4 |
⊢ ( CHOICE ↔ ∀ 𝑦 ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ∀ 𝑥 AC 𝑥 = V → CHOICE ) |
| 55 |
3 54
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑥 AC 𝑥 = V ) |