| Step | Hyp | Ref | Expression | 
						
							| 1 |  | treq | ⊢ ( 𝑦  =  𝑏  →  ( Tr  𝑦  ↔  Tr  𝑏 ) ) | 
						
							| 2 | 1 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  𝑁 Tr  𝑦  ↔  ∀ 𝑏  ∈  𝑁 Tr  𝑏 ) | 
						
							| 3 | 2 | biimpi | ⊢ ( ∀ 𝑦  ∈  𝑁 Tr  𝑦  →  ∀ 𝑏  ∈  𝑁 Tr  𝑏 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑦  ∈  𝑁 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑁 Tr  𝑏 ) | 
						
							| 5 |  | trss | ⊢ ( Tr  𝑁  →  ( 𝑏  ∈  𝑁  →  𝑏  ⊆  𝑁 ) ) | 
						
							| 6 |  | ssralv | ⊢ ( 𝑏  ⊆  𝑁  →  ( ∀ 𝑦  ∈  𝑁 Tr  𝑦  →  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) | 
						
							| 7 | 5 6 | syl6 | ⊢ ( Tr  𝑁  →  ( 𝑏  ∈  𝑁  →  ( ∀ 𝑦  ∈  𝑁 Tr  𝑦  →  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) ) | 
						
							| 8 | 7 | com23 | ⊢ ( Tr  𝑁  →  ( ∀ 𝑦  ∈  𝑁 Tr  𝑦  →  ( 𝑏  ∈  𝑁  →  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑦  ∈  𝑁 Tr  𝑦 )  →  ( 𝑏  ∈  𝑁  →  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) | 
						
							| 10 | 9 | ralrimiv | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑦  ∈  𝑁 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑁 ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) | 
						
							| 11 |  | r19.26 | ⊢ ( ∀ 𝑏  ∈  𝑁 ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  ↔  ( ∀ 𝑏  ∈  𝑁 Tr  𝑏  ∧  ∀ 𝑏  ∈  𝑁 ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) | 
						
							| 12 | 4 10 11 | sylanbrc | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑦  ∈  𝑁 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑁 ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) |