Step |
Hyp |
Ref |
Expression |
1 |
|
treq |
⊢ ( 𝑦 = 𝑏 → ( Tr 𝑦 ↔ Tr 𝑏 ) ) |
2 |
1
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀ 𝑏 ∈ 𝑁 Tr 𝑏 ) |
3 |
2
|
biimpi |
⊢ ( ∀ 𝑦 ∈ 𝑁 Tr 𝑦 → ∀ 𝑏 ∈ 𝑁 Tr 𝑏 ) |
4 |
3
|
adantl |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑁 Tr 𝑏 ) |
5 |
|
trss |
⊢ ( Tr 𝑁 → ( 𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁 ) ) |
6 |
|
ssralv |
⊢ ( 𝑏 ⊆ 𝑁 → ( ∀ 𝑦 ∈ 𝑁 Tr 𝑦 → ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |
7 |
5 6
|
syl6 |
⊢ ( Tr 𝑁 → ( 𝑏 ∈ 𝑁 → ( ∀ 𝑦 ∈ 𝑁 Tr 𝑦 → ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) ) |
8 |
7
|
com23 |
⊢ ( Tr 𝑁 → ( ∀ 𝑦 ∈ 𝑁 Tr 𝑦 → ( 𝑏 ∈ 𝑁 → ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) ) |
9 |
8
|
imp |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 Tr 𝑦 ) → ( 𝑏 ∈ 𝑁 → ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |
10 |
9
|
ralrimiv |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑁 ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) |
11 |
|
r19.26 |
⊢ ( ∀ 𝑏 ∈ 𝑁 ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ↔ ( ∀ 𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀ 𝑏 ∈ 𝑁 ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |
12 |
4 10 11
|
sylanbrc |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑁 ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |