Metamath Proof Explorer


Theorem dford3

Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3 ( Ord 𝑁 ↔ ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝑁 → Tr 𝑁 )
2 ordelord ( ( Ord 𝑁𝑥𝑁 ) → Ord 𝑥 )
3 ordtr ( Ord 𝑥 → Tr 𝑥 )
4 2 3 syl ( ( Ord 𝑁𝑥𝑁 ) → Tr 𝑥 )
5 4 ralrimiva ( Ord 𝑁 → ∀ 𝑥𝑁 Tr 𝑥 )
6 1 5 jca ( Ord 𝑁 → ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) )
7 simpl ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → Tr 𝑁 )
8 dford3lem1 ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → ∀ 𝑎𝑁 ( Tr 𝑎 ∧ ∀ 𝑥𝑎 Tr 𝑥 ) )
9 dford3lem2 ( ( Tr 𝑎 ∧ ∀ 𝑥𝑎 Tr 𝑥 ) → 𝑎 ∈ On )
10 9 ralimi ( ∀ 𝑎𝑁 ( Tr 𝑎 ∧ ∀ 𝑥𝑎 Tr 𝑥 ) → ∀ 𝑎𝑁 𝑎 ∈ On )
11 8 10 syl ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → ∀ 𝑎𝑁 𝑎 ∈ On )
12 dfss3 ( 𝑁 ⊆ On ↔ ∀ 𝑎𝑁 𝑎 ∈ On )
13 11 12 sylibr ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → 𝑁 ⊆ On )
14 ordon Ord On
15 14 a1i ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → Ord On )
16 trssord ( ( Tr 𝑁𝑁 ⊆ On ∧ Ord On ) → Ord 𝑁 )
17 7 13 15 16 syl3anc ( ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) → Ord 𝑁 )
18 6 17 impbii ( Ord 𝑁 ↔ ( Tr 𝑁 ∧ ∀ 𝑥𝑁 Tr 𝑥 ) )