| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtr | ⊢ ( Ord  𝑁  →  Tr  𝑁 ) | 
						
							| 2 |  | ordelord | ⊢ ( ( Ord  𝑁  ∧  𝑥  ∈  𝑁 )  →  Ord  𝑥 ) | 
						
							| 3 |  | ordtr | ⊢ ( Ord  𝑥  →  Tr  𝑥 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( Ord  𝑁  ∧  𝑥  ∈  𝑁 )  →  Tr  𝑥 ) | 
						
							| 5 | 4 | ralrimiva | ⊢ ( Ord  𝑁  →  ∀ 𝑥  ∈  𝑁 Tr  𝑥 ) | 
						
							| 6 | 1 5 | jca | ⊢ ( Ord  𝑁  →  ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  Tr  𝑁 ) | 
						
							| 8 |  | dford3lem1 | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  ∀ 𝑎  ∈  𝑁 ( Tr  𝑎  ∧  ∀ 𝑥  ∈  𝑎 Tr  𝑥 ) ) | 
						
							| 9 |  | dford3lem2 | ⊢ ( ( Tr  𝑎  ∧  ∀ 𝑥  ∈  𝑎 Tr  𝑥 )  →  𝑎  ∈  On ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑎  ∈  𝑁 ( Tr  𝑎  ∧  ∀ 𝑥  ∈  𝑎 Tr  𝑥 )  →  ∀ 𝑎  ∈  𝑁 𝑎  ∈  On ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  ∀ 𝑎  ∈  𝑁 𝑎  ∈  On ) | 
						
							| 12 |  | dfss3 | ⊢ ( 𝑁  ⊆  On  ↔  ∀ 𝑎  ∈  𝑁 𝑎  ∈  On ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  𝑁  ⊆  On ) | 
						
							| 14 |  | ordon | ⊢ Ord  On | 
						
							| 15 | 14 | a1i | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  Ord  On ) | 
						
							| 16 |  | trssord | ⊢ ( ( Tr  𝑁  ∧  𝑁  ⊆  On  ∧  Ord  On )  →  Ord  𝑁 ) | 
						
							| 17 | 7 13 15 16 | syl3anc | ⊢ ( ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 )  →  Ord  𝑁 ) | 
						
							| 18 | 6 17 | impbii | ⊢ ( Ord  𝑁  ↔  ( Tr  𝑁  ∧  ∀ 𝑥  ∈  𝑁 Tr  𝑥 ) ) |