Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
⊢ ( Ord 𝑁 → Tr 𝑁 ) |
2 |
|
ordelord |
⊢ ( ( Ord 𝑁 ∧ 𝑥 ∈ 𝑁 ) → Ord 𝑥 ) |
3 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
4 |
2 3
|
syl |
⊢ ( ( Ord 𝑁 ∧ 𝑥 ∈ 𝑁 ) → Tr 𝑥 ) |
5 |
4
|
ralrimiva |
⊢ ( Ord 𝑁 → ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) |
6 |
1 5
|
jca |
⊢ ( Ord 𝑁 → ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) ) |
7 |
|
simpl |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → Tr 𝑁 ) |
8 |
|
dford3lem1 |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → ∀ 𝑎 ∈ 𝑁 ( Tr 𝑎 ∧ ∀ 𝑥 ∈ 𝑎 Tr 𝑥 ) ) |
9 |
|
dford3lem2 |
⊢ ( ( Tr 𝑎 ∧ ∀ 𝑥 ∈ 𝑎 Tr 𝑥 ) → 𝑎 ∈ On ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑎 ∈ 𝑁 ( Tr 𝑎 ∧ ∀ 𝑥 ∈ 𝑎 Tr 𝑥 ) → ∀ 𝑎 ∈ 𝑁 𝑎 ∈ On ) |
11 |
8 10
|
syl |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → ∀ 𝑎 ∈ 𝑁 𝑎 ∈ On ) |
12 |
|
dfss3 |
⊢ ( 𝑁 ⊆ On ↔ ∀ 𝑎 ∈ 𝑁 𝑎 ∈ On ) |
13 |
11 12
|
sylibr |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → 𝑁 ⊆ On ) |
14 |
|
ordon |
⊢ Ord On |
15 |
14
|
a1i |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → Ord On ) |
16 |
|
trssord |
⊢ ( ( Tr 𝑁 ∧ 𝑁 ⊆ On ∧ Ord On ) → Ord 𝑁 ) |
17 |
7 13 15 16
|
syl3anc |
⊢ ( ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) → Ord 𝑁 ) |
18 |
6 17
|
impbii |
⊢ ( Ord 𝑁 ↔ ( Tr 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 Tr 𝑥 ) ) |