Metamath Proof Explorer


Theorem dford3

Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3
|- ( Ord N <-> ( Tr N /\ A. x e. N Tr x ) )

Proof

Step Hyp Ref Expression
1 ordtr
 |-  ( Ord N -> Tr N )
2 ordelord
 |-  ( ( Ord N /\ x e. N ) -> Ord x )
3 ordtr
 |-  ( Ord x -> Tr x )
4 2 3 syl
 |-  ( ( Ord N /\ x e. N ) -> Tr x )
5 4 ralrimiva
 |-  ( Ord N -> A. x e. N Tr x )
6 1 5 jca
 |-  ( Ord N -> ( Tr N /\ A. x e. N Tr x ) )
7 simpl
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> Tr N )
8 dford3lem1
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> A. a e. N ( Tr a /\ A. x e. a Tr x ) )
9 dford3lem2
 |-  ( ( Tr a /\ A. x e. a Tr x ) -> a e. On )
10 9 ralimi
 |-  ( A. a e. N ( Tr a /\ A. x e. a Tr x ) -> A. a e. N a e. On )
11 8 10 syl
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> A. a e. N a e. On )
12 dfss3
 |-  ( N C_ On <-> A. a e. N a e. On )
13 11 12 sylibr
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> N C_ On )
14 ordon
 |-  Ord On
15 14 a1i
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> Ord On )
16 trssord
 |-  ( ( Tr N /\ N C_ On /\ Ord On ) -> Ord N )
17 7 13 15 16 syl3anc
 |-  ( ( Tr N /\ A. x e. N Tr x ) -> Ord N )
18 6 17 impbii
 |-  ( Ord N <-> ( Tr N /\ A. x e. N Tr x ) )