Metamath Proof Explorer


Theorem dford3

Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3 Ord N Tr N x N Tr x

Proof

Step Hyp Ref Expression
1 ordtr Ord N Tr N
2 ordelord Ord N x N Ord x
3 ordtr Ord x Tr x
4 2 3 syl Ord N x N Tr x
5 4 ralrimiva Ord N x N Tr x
6 1 5 jca Ord N Tr N x N Tr x
7 simpl Tr N x N Tr x Tr N
8 dford3lem1 Tr N x N Tr x a N Tr a x a Tr x
9 dford3lem2 Tr a x a Tr x a On
10 9 ralimi a N Tr a x a Tr x a N a On
11 8 10 syl Tr N x N Tr x a N a On
12 dfss3 N On a N a On
13 11 12 sylibr Tr N x N Tr x N On
14 ordon Ord On
15 14 a1i Tr N x N Tr x Ord On
16 trssord Tr N N On Ord On Ord N
17 7 13 15 16 syl3anc Tr N x N Tr x Ord N
18 6 17 impbii Ord N Tr N x N Tr x