| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suctr | ⊢ ( Tr  𝑥  →  Tr  suc  𝑥 ) | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 | 2 | sucid | ⊢ 𝑥  ∈  suc  𝑥 | 
						
							| 4 | 2 | sucex | ⊢ suc  𝑥  ∈  V | 
						
							| 5 |  | treq | ⊢ ( 𝑐  =  suc  𝑥  →  ( Tr  𝑐  ↔  Tr  suc  𝑥 ) ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑐  =  suc  𝑥  →  ( 𝑥  ∈  𝑐  ↔  𝑥  ∈  suc  𝑥 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝑐  =  suc  𝑥  →  ( ( Tr  𝑐  ∧  𝑥  ∈  𝑐 )  ↔  ( Tr  suc  𝑥  ∧  𝑥  ∈  suc  𝑥 ) ) ) | 
						
							| 8 | 4 7 | spcev | ⊢ ( ( Tr  suc  𝑥  ∧  𝑥  ∈  suc  𝑥 )  →  ∃ 𝑐 ( Tr  𝑐  ∧  𝑥  ∈  𝑐 ) ) | 
						
							| 9 | 1 3 8 | sylancl | ⊢ ( Tr  𝑥  →  ∃ 𝑐 ( Tr  𝑐  ∧  𝑥  ∈  𝑐 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( Tr  𝑥  ∧  ∀ 𝑦  ∈  𝑥 Tr  𝑦 )  →  ∃ 𝑐 ( Tr  𝑐  ∧  𝑥  ∈  𝑐 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  Tr  𝑎 ) | 
						
							| 12 |  | dford3lem1 | ⊢ ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑎 ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) | 
						
							| 13 |  | ralim | ⊢ ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  →  ( ∀ 𝑏  ∈  𝑎 ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑎 𝑏  ∈  On ) ) | 
						
							| 14 | 12 13 | syl5 | ⊢ ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  →  ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  →  ∀ 𝑏  ∈  𝑎 𝑏  ∈  On ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  ∀ 𝑏  ∈  𝑎 𝑏  ∈  On ) | 
						
							| 16 |  | dfss3 | ⊢ ( 𝑎  ⊆  On  ↔  ∀ 𝑏  ∈  𝑎 𝑏  ∈  On ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  𝑎  ⊆  On ) | 
						
							| 18 |  | ordon | ⊢ Ord  On | 
						
							| 19 | 18 | a1i | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  Ord  On ) | 
						
							| 20 |  | trssord | ⊢ ( ( Tr  𝑎  ∧  𝑎  ⊆  On  ∧  Ord  On )  →  Ord  𝑎 ) | 
						
							| 21 | 11 17 19 20 | syl3anc | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  Ord  𝑎 ) | 
						
							| 22 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 23 | 22 | elon | ⊢ ( 𝑎  ∈  On  ↔  Ord  𝑎 ) | 
						
							| 24 | 21 23 | sylibr | ⊢ ( ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  ∧  ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 ) )  →  𝑎  ∈  On ) | 
						
							| 25 | 24 | ex | ⊢ ( ∀ 𝑏  ∈  𝑎 ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On )  →  ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  →  𝑎  ∈  On ) ) | 
						
							| 26 |  | treq | ⊢ ( 𝑎  =  𝑏  →  ( Tr  𝑎  ↔  Tr  𝑏 ) ) | 
						
							| 27 |  | raleq | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑦  ∈  𝑎 Tr  𝑦  ↔  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) | 
						
							| 28 | 26 27 | anbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  ↔  ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 ) ) ) | 
						
							| 29 |  | eleq1w | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∈  On  ↔  𝑏  ∈  On ) ) | 
						
							| 30 | 28 29 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  →  𝑎  ∈  On )  ↔  ( ( Tr  𝑏  ∧  ∀ 𝑦  ∈  𝑏 Tr  𝑦 )  →  𝑏  ∈  On ) ) ) | 
						
							| 31 |  | treq | ⊢ ( 𝑎  =  𝑥  →  ( Tr  𝑎  ↔  Tr  𝑥 ) ) | 
						
							| 32 |  | raleq | ⊢ ( 𝑎  =  𝑥  →  ( ∀ 𝑦  ∈  𝑎 Tr  𝑦  ↔  ∀ 𝑦  ∈  𝑥 Tr  𝑦 ) ) | 
						
							| 33 | 31 32 | anbi12d | ⊢ ( 𝑎  =  𝑥  →  ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  ↔  ( Tr  𝑥  ∧  ∀ 𝑦  ∈  𝑥 Tr  𝑦 ) ) ) | 
						
							| 34 |  | eleq1w | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎  ∈  On  ↔  𝑥  ∈  On ) ) | 
						
							| 35 | 33 34 | imbi12d | ⊢ ( 𝑎  =  𝑥  →  ( ( ( Tr  𝑎  ∧  ∀ 𝑦  ∈  𝑎 Tr  𝑦 )  →  𝑎  ∈  On )  ↔  ( ( Tr  𝑥  ∧  ∀ 𝑦  ∈  𝑥 Tr  𝑦 )  →  𝑥  ∈  On ) ) ) | 
						
							| 36 | 25 30 35 | setindtrs | ⊢ ( ∃ 𝑐 ( Tr  𝑐  ∧  𝑥  ∈  𝑐 )  →  ( ( Tr  𝑥  ∧  ∀ 𝑦  ∈  𝑥 Tr  𝑦 )  →  𝑥  ∈  On ) ) | 
						
							| 37 | 10 36 | mpcom | ⊢ ( ( Tr  𝑥  ∧  ∀ 𝑦  ∈  𝑥 Tr  𝑦 )  →  𝑥  ∈  On ) |