Step |
Hyp |
Ref |
Expression |
1 |
|
suctr |
⊢ ( Tr 𝑥 → Tr suc 𝑥 ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
4 |
2
|
sucex |
⊢ suc 𝑥 ∈ V |
5 |
|
treq |
⊢ ( 𝑐 = suc 𝑥 → ( Tr 𝑐 ↔ Tr suc 𝑥 ) ) |
6 |
|
eleq2 |
⊢ ( 𝑐 = suc 𝑥 → ( 𝑥 ∈ 𝑐 ↔ 𝑥 ∈ suc 𝑥 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑐 = suc 𝑥 → ( ( Tr 𝑐 ∧ 𝑥 ∈ 𝑐 ) ↔ ( Tr suc 𝑥 ∧ 𝑥 ∈ suc 𝑥 ) ) ) |
8 |
4 7
|
spcev |
⊢ ( ( Tr suc 𝑥 ∧ 𝑥 ∈ suc 𝑥 ) → ∃ 𝑐 ( Tr 𝑐 ∧ 𝑥 ∈ 𝑐 ) ) |
9 |
1 3 8
|
sylancl |
⊢ ( Tr 𝑥 → ∃ 𝑐 ( Tr 𝑐 ∧ 𝑥 ∈ 𝑐 ) ) |
10 |
9
|
adantr |
⊢ ( ( Tr 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) → ∃ 𝑐 ( Tr 𝑐 ∧ 𝑥 ∈ 𝑐 ) ) |
11 |
|
simprl |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → Tr 𝑎 ) |
12 |
|
dford3lem1 |
⊢ ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑎 ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |
13 |
|
ralim |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) → ( ∀ 𝑏 ∈ 𝑎 ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑎 𝑏 ∈ On ) ) |
14 |
12 13
|
syl5 |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) → ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) → ∀ 𝑏 ∈ 𝑎 𝑏 ∈ On ) ) |
15 |
14
|
imp |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → ∀ 𝑏 ∈ 𝑎 𝑏 ∈ On ) |
16 |
|
dfss3 |
⊢ ( 𝑎 ⊆ On ↔ ∀ 𝑏 ∈ 𝑎 𝑏 ∈ On ) |
17 |
15 16
|
sylibr |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → 𝑎 ⊆ On ) |
18 |
|
ordon |
⊢ Ord On |
19 |
18
|
a1i |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → Ord On ) |
20 |
|
trssord |
⊢ ( ( Tr 𝑎 ∧ 𝑎 ⊆ On ∧ Ord On ) → Ord 𝑎 ) |
21 |
11 17 19 20
|
syl3anc |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → Ord 𝑎 ) |
22 |
|
vex |
⊢ 𝑎 ∈ V |
23 |
22
|
elon |
⊢ ( 𝑎 ∈ On ↔ Ord 𝑎 ) |
24 |
21 23
|
sylibr |
⊢ ( ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ∧ ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ) → 𝑎 ∈ On ) |
25 |
24
|
ex |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) → ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) → 𝑎 ∈ On ) ) |
26 |
|
treq |
⊢ ( 𝑎 = 𝑏 → ( Tr 𝑎 ↔ Tr 𝑏 ) ) |
27 |
|
raleq |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ↔ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) |
28 |
26 27
|
anbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ↔ ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) ) ) |
29 |
|
eleq1w |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ On ↔ 𝑏 ∈ On ) ) |
30 |
28 29
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) → 𝑎 ∈ On ) ↔ ( ( Tr 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 Tr 𝑦 ) → 𝑏 ∈ On ) ) ) |
31 |
|
treq |
⊢ ( 𝑎 = 𝑥 → ( Tr 𝑎 ↔ Tr 𝑥 ) ) |
32 |
|
raleq |
⊢ ( 𝑎 = 𝑥 → ( ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ↔ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) ↔ ( Tr 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) ) ) |
34 |
|
eleq1w |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ∈ On ↔ 𝑥 ∈ On ) ) |
35 |
33 34
|
imbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( ( Tr 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 Tr 𝑦 ) → 𝑎 ∈ On ) ↔ ( ( Tr 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) → 𝑥 ∈ On ) ) ) |
36 |
25 30 35
|
setindtrs |
⊢ ( ∃ 𝑐 ( Tr 𝑐 ∧ 𝑥 ∈ 𝑐 ) → ( ( Tr 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) → 𝑥 ∈ On ) ) |
37 |
10 36
|
mpcom |
⊢ ( ( Tr 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr 𝑦 ) → 𝑥 ∈ On ) |