Metamath Proof Explorer


Theorem setindtrs

Description: Set induction scheme without Infinity. See comments at setindtr . (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Hypotheses setindtrs.a ( ∀ 𝑦𝑥 𝜓𝜑 )
setindtrs.b ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
setindtrs.c ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
Assertion setindtrs ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 setindtrs.a ( ∀ 𝑦𝑥 𝜓𝜑 )
2 setindtrs.b ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 setindtrs.c ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
4 setindtr ( ∀ 𝑎 ( 𝑎 ⊆ { 𝑥𝜑 } → 𝑎 ∈ { 𝑥𝜑 } ) → ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → 𝐵 ∈ { 𝑥𝜑 } ) )
5 dfss3 ( 𝑎 ⊆ { 𝑥𝜑 } ↔ ∀ 𝑦𝑎 𝑦 ∈ { 𝑥𝜑 } )
6 nfcv 𝑥 𝑎
7 nfsab1 𝑥 𝑦 ∈ { 𝑥𝜑 }
8 6 7 nfralw 𝑥𝑦𝑎 𝑦 ∈ { 𝑥𝜑 }
9 nfsab1 𝑥 𝑎 ∈ { 𝑥𝜑 }
10 8 9 nfim 𝑥 ( ∀ 𝑦𝑎 𝑦 ∈ { 𝑥𝜑 } → 𝑎 ∈ { 𝑥𝜑 } )
11 raleq ( 𝑥 = 𝑎 → ( ∀ 𝑦𝑥 𝑦 ∈ { 𝑥𝜑 } ↔ ∀ 𝑦𝑎 𝑦 ∈ { 𝑥𝜑 } ) )
12 eleq1w ( 𝑥 = 𝑎 → ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑎 ∈ { 𝑥𝜑 } ) )
13 11 12 imbi12d ( 𝑥 = 𝑎 → ( ( ∀ 𝑦𝑥 𝑦 ∈ { 𝑥𝜑 } → 𝑥 ∈ { 𝑥𝜑 } ) ↔ ( ∀ 𝑦𝑎 𝑦 ∈ { 𝑥𝜑 } → 𝑎 ∈ { 𝑥𝜑 } ) ) )
14 vex 𝑦 ∈ V
15 14 2 elab ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜓 )
16 15 ralbii ( ∀ 𝑦𝑥 𝑦 ∈ { 𝑥𝜑 } ↔ ∀ 𝑦𝑥 𝜓 )
17 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
18 1 16 17 3imtr4i ( ∀ 𝑦𝑥 𝑦 ∈ { 𝑥𝜑 } → 𝑥 ∈ { 𝑥𝜑 } )
19 10 13 18 chvarfv ( ∀ 𝑦𝑎 𝑦 ∈ { 𝑥𝜑 } → 𝑎 ∈ { 𝑥𝜑 } )
20 5 19 sylbi ( 𝑎 ⊆ { 𝑥𝜑 } → 𝑎 ∈ { 𝑥𝜑 } )
21 4 20 mpg ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → 𝐵 ∈ { 𝑥𝜑 } )
22 elex ( 𝐵𝑧𝐵 ∈ V )
23 22 adantl ( ( Tr 𝑧𝐵𝑧 ) → 𝐵 ∈ V )
24 23 exlimiv ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → 𝐵 ∈ V )
25 3 elabg ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑥𝜑 } ↔ 𝜒 ) )
26 24 25 syl ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → ( 𝐵 ∈ { 𝑥𝜑 } ↔ 𝜒 ) )
27 21 26 mpbid ( ∃ 𝑧 ( Tr 𝑧𝐵𝑧 ) → 𝜒 )