| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setindtrs.a | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) | 
						
							| 2 |  | setindtrs.b | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | setindtrs.c | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 4 |  | setindtr | ⊢ ( ∀ 𝑎 ( 𝑎  ⊆  { 𝑥  ∣  𝜑 }  →  𝑎  ∈  { 𝑥  ∣  𝜑 } )  →  ( ∃ 𝑧 ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  𝐵  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 5 |  | dfss3 | ⊢ ( 𝑎  ⊆  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 7 |  | nfsab1 | ⊢ Ⅎ 𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 } | 
						
							| 8 | 6 7 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 } | 
						
							| 9 |  | nfsab1 | ⊢ Ⅎ 𝑥 𝑎  ∈  { 𝑥  ∣  𝜑 } | 
						
							| 10 | 8 9 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑎  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 11 |  | raleq | ⊢ ( 𝑥  =  𝑎  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑎  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑥  ∈  { 𝑥  ∣  𝜑 } )  ↔  ( ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑎  ∈  { 𝑥  ∣  𝜑 } ) ) ) | 
						
							| 14 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 15 | 14 2 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜓 ) | 
						
							| 16 | 15 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 17 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜑 ) | 
						
							| 18 | 1 16 17 | 3imtr4i | ⊢ ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑥  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 19 | 10 13 18 | chvarfv | ⊢ ( ∀ 𝑦  ∈  𝑎 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑎  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 20 | 5 19 | sylbi | ⊢ ( 𝑎  ⊆  { 𝑥  ∣  𝜑 }  →  𝑎  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 21 | 4 20 | mpg | ⊢ ( ∃ 𝑧 ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  𝐵  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 22 |  | elex | ⊢ ( 𝐵  ∈  𝑧  →  𝐵  ∈  V ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  𝐵  ∈  V ) | 
						
							| 24 | 23 | exlimiv | ⊢ ( ∃ 𝑧 ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  𝐵  ∈  V ) | 
						
							| 25 | 3 | elabg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜒 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ∃ 𝑧 ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  ( 𝐵  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜒 ) ) | 
						
							| 27 | 21 26 | mpbid | ⊢ ( ∃ 𝑧 ( Tr  𝑧  ∧  𝐵  ∈  𝑧 )  →  𝜒 ) |