Step |
Hyp |
Ref |
Expression |
1 |
|
setindtrs.a |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) |
2 |
|
setindtrs.b |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
setindtrs.c |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
4 |
|
setindtr |
⊢ ( ∀ 𝑎 ( 𝑎 ⊆ { 𝑥 ∣ 𝜑 } → 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) → ( ∃ 𝑧 ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → 𝐵 ∈ { 𝑥 ∣ 𝜑 } ) ) |
5 |
|
dfss3 |
⊢ ( 𝑎 ⊆ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
7 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
8 |
6 7
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
9 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑎 ∈ { 𝑥 ∣ 𝜑 } |
10 |
8 9
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) |
11 |
|
raleq |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
12 |
|
eleq1w |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) ) ) |
14 |
|
vex |
⊢ 𝑦 ∈ V |
15 |
14 2
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
16 |
15
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) |
17 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
18 |
1 16 17
|
3imtr4i |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) |
19 |
10 13 18
|
chvarfv |
⊢ ( ∀ 𝑦 ∈ 𝑎 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) |
20 |
5 19
|
sylbi |
⊢ ( 𝑎 ⊆ { 𝑥 ∣ 𝜑 } → 𝑎 ∈ { 𝑥 ∣ 𝜑 } ) |
21 |
4 20
|
mpg |
⊢ ( ∃ 𝑧 ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → 𝐵 ∈ { 𝑥 ∣ 𝜑 } ) |
22 |
|
elex |
⊢ ( 𝐵 ∈ 𝑧 → 𝐵 ∈ V ) |
23 |
22
|
adantl |
⊢ ( ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → 𝐵 ∈ V ) |
24 |
23
|
exlimiv |
⊢ ( ∃ 𝑧 ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → 𝐵 ∈ V ) |
25 |
3
|
elabg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) ) |
26 |
24 25
|
syl |
⊢ ( ∃ 𝑧 ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → ( 𝐵 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) ) |
27 |
21 26
|
mpbid |
⊢ ( ∃ 𝑧 ( Tr 𝑧 ∧ 𝐵 ∈ 𝑧 ) → 𝜒 ) |