| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑥 Tr 𝑦 |
| 2 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) |
| 3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 4 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 5 |
4
|
adantl |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 6 |
|
trss |
⊢ ( Tr 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) |
| 7 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → 𝑥 ∈ 𝑦 ) |
| 8 |
6 7
|
impel |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → 𝑥 ⊆ 𝑦 ) |
| 9 |
|
dfss2 |
⊢ ( 𝑥 ⊆ 𝑦 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
| 10 |
8 9
|
sylib |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
| 11 |
10
|
adantlr |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
| 12 |
11
|
sseq1d |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
| 13 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 15 |
12 14
|
sylbid |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 16 |
5 15
|
mtod |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) |
| 17 |
|
inssdif0 |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ↔ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 18 |
16 17
|
sylnib |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 19 |
18
|
ex |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) ) |
| 20 |
3 19
|
ralrimi |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 21 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ↔ ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 22 |
20 21
|
sylib |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 23 |
|
vex |
⊢ 𝑦 ∈ V |
| 24 |
23
|
difexi |
⊢ ( 𝑦 ∖ 𝐴 ) ∈ V |
| 25 |
|
zfreg |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ∈ V ∧ ( 𝑦 ∖ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 26 |
24 25
|
mpan |
⊢ ( ( 𝑦 ∖ 𝐴 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
| 27 |
26
|
necon1bi |
⊢ ( ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ → ( 𝑦 ∖ 𝐴 ) = ∅ ) |
| 28 |
22 27
|
syl |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∖ 𝐴 ) = ∅ ) |
| 29 |
|
ssdif0 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝑦 ∖ 𝐴 ) = ∅ ) |
| 30 |
28 29
|
sylibr |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
| 32 |
|
simplr |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝑦 ) |
| 33 |
31 32
|
sseldd |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) |
| 34 |
33
|
ex |
⊢ ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| 35 |
34
|
exlimiv |
⊢ ( ∃ 𝑦 ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| 36 |
35
|
com12 |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → 𝐵 ∈ 𝐴 ) ) |