Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑥 Tr 𝑦 |
2 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) |
3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
4 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
6 |
|
trss |
⊢ ( Tr 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦 ) ) |
7 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → 𝑥 ∈ 𝑦 ) |
8 |
6 7
|
impel |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → 𝑥 ⊆ 𝑦 ) |
9 |
|
df-ss |
⊢ ( 𝑥 ⊆ 𝑦 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
10 |
8 9
|
sylib |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
11 |
10
|
adantlr |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
12 |
11
|
sseq1d |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
13 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
15 |
12 14
|
sylbid |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
16 |
5 15
|
mtod |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) |
17 |
|
inssdif0 |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ↔ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
18 |
16 17
|
sylnib |
⊢ ( ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ) → ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
19 |
18
|
ex |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) → ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) ) |
20 |
3 19
|
ralrimi |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
21 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ¬ ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ↔ ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
22 |
20 21
|
sylib |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
23
|
difexi |
⊢ ( 𝑦 ∖ 𝐴 ) ∈ V |
25 |
|
zfreg |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ∈ V ∧ ( 𝑦 ∖ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
26 |
24 25
|
mpan |
⊢ ( ( 𝑦 ∖ 𝐴 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ ) |
27 |
26
|
necon1bi |
⊢ ( ¬ ∃ 𝑥 ∈ ( 𝑦 ∖ 𝐴 ) ( 𝑥 ∩ ( 𝑦 ∖ 𝐴 ) ) = ∅ → ( 𝑦 ∖ 𝐴 ) = ∅ ) |
28 |
22 27
|
syl |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∖ 𝐴 ) = ∅ ) |
29 |
|
ssdif0 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝑦 ∖ 𝐴 ) = ∅ ) |
30 |
28 29
|
sylibr |
⊢ ( ( Tr 𝑦 ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
31 |
30
|
adantlr |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
32 |
|
simplr |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝑦 ) |
33 |
31 32
|
sseldd |
⊢ ( ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) |
34 |
33
|
ex |
⊢ ( ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
35 |
34
|
exlimiv |
⊢ ( ∃ 𝑦 ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
36 |
35
|
com12 |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ( Tr 𝑦 ∧ 𝐵 ∈ 𝑦 ) → 𝐵 ∈ 𝐴 ) ) |