| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑥 Tr  𝑦 | 
						
							| 2 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) | 
						
							| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 4 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝑦  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 6 |  | trss | ⊢ ( Tr  𝑦  →  ( 𝑥  ∈  𝑦  →  𝑥  ⊆  𝑦 ) ) | 
						
							| 7 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑦  ∖  𝐴 )  →  𝑥  ∈  𝑦 ) | 
						
							| 8 | 6 7 | impel | ⊢ ( ( Tr  𝑦  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  𝑥  ⊆  𝑦 ) | 
						
							| 9 |  | dfss2 | ⊢ ( 𝑥  ⊆  𝑦  ↔  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( Tr  𝑦  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 12 | 11 | sseq1d | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ( ( 𝑥  ∩  𝑦 )  ⊆  𝐴  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 13 |  | sp | ⊢ ( ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 )  →  ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 15 | 12 14 | sylbid | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ( ( 𝑥  ∩  𝑦 )  ⊆  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 16 | 5 15 | mtod | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ¬  ( 𝑥  ∩  𝑦 )  ⊆  𝐴 ) | 
						
							| 17 |  | inssdif0 | ⊢ ( ( 𝑥  ∩  𝑦 )  ⊆  𝐴  ↔  ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 18 | 16 17 | sylnib | ⊢ ( ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  ∧  𝑥  ∈  ( 𝑦  ∖  𝐴 ) )  →  ¬  ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 19 | 18 | ex | ⊢ ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  ( 𝑥  ∈  ( 𝑦  ∖  𝐴 )  →  ¬  ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) ) | 
						
							| 20 | 3 19 | ralrimi | ⊢ ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  ∀ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ¬  ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 21 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ¬  ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅  ↔  ¬  ∃ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  ¬  ∃ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 | 23 | difexi | ⊢ ( 𝑦  ∖  𝐴 )  ∈  V | 
						
							| 25 |  | zfreg | ⊢ ( ( ( 𝑦  ∖  𝐴 )  ∈  V  ∧  ( 𝑦  ∖  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 26 | 24 25 | mpan | ⊢ ( ( 𝑦  ∖  𝐴 )  ≠  ∅  →  ∃ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 27 | 26 | necon1bi | ⊢ ( ¬  ∃ 𝑥  ∈  ( 𝑦  ∖  𝐴 ) ( 𝑥  ∩  ( 𝑦  ∖  𝐴 ) )  =  ∅  →  ( 𝑦  ∖  𝐴 )  =  ∅ ) | 
						
							| 28 | 22 27 | syl | ⊢ ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  ( 𝑦  ∖  𝐴 )  =  ∅ ) | 
						
							| 29 |  | ssdif0 | ⊢ ( 𝑦  ⊆  𝐴  ↔  ( 𝑦  ∖  𝐴 )  =  ∅ ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( ( Tr  𝑦  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  𝑦  ⊆  𝐴 ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  𝑦  ⊆  𝐴 ) | 
						
							| 32 |  | simplr | ⊢ ( ( ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  𝐵  ∈  𝑦 ) | 
						
							| 33 | 31 32 | sseldd | ⊢ ( ( ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  ∧  ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  →  ( ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝐴 ) ) | 
						
							| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑦 ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  →  ( ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝐴 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( ∀ 𝑥 ( 𝑥  ⊆  𝐴  →  𝑥  ∈  𝐴 )  →  ( ∃ 𝑦 ( Tr  𝑦  ∧  𝐵  ∈  𝑦 )  →  𝐵  ∈  𝐴 ) ) |