| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  | 
						
							| 2 |  | nfa1 |  | 
						
							| 3 | 1 2 | nfan |  | 
						
							| 4 |  | eldifn |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | trss |  | 
						
							| 7 |  | eldifi |  | 
						
							| 8 | 6 7 | impel |  | 
						
							| 9 |  | dfss2 |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 | 10 | adantlr |  | 
						
							| 12 | 11 | sseq1d |  | 
						
							| 13 |  | sp |  | 
						
							| 14 | 13 | ad2antlr |  | 
						
							| 15 | 12 14 | sylbid |  | 
						
							| 16 | 5 15 | mtod |  | 
						
							| 17 |  | inssdif0 |  | 
						
							| 18 | 16 17 | sylnib |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 | 3 19 | ralrimi |  | 
						
							| 21 |  | ralnex |  | 
						
							| 22 | 20 21 | sylib |  | 
						
							| 23 |  | vex |  | 
						
							| 24 | 23 | difexi |  | 
						
							| 25 |  | zfreg |  | 
						
							| 26 | 24 25 | mpan |  | 
						
							| 27 | 26 | necon1bi |  | 
						
							| 28 | 22 27 | syl |  | 
						
							| 29 |  | ssdif0 |  | 
						
							| 30 | 28 29 | sylibr |  | 
						
							| 31 | 30 | adantlr |  | 
						
							| 32 |  | simplr |  | 
						
							| 33 | 31 32 | sseldd |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 34 | exlimiv |  | 
						
							| 36 | 35 | com12 |  |