| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcan8d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
divcan8d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
divcan8d.a0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 4 |
|
divcan8d.b0 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 5 |
1 2
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 6 |
1 2 3 4
|
mulne0d |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ≠ 0 ) |
| 7 |
1 2 6
|
mulne0bbd |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 8 |
2 5 2 6 7
|
divcan7d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐵 ) / ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) = ( 𝐵 / ( 𝐴 · 𝐵 ) ) ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐴 · 𝐵 ) ) = ( ( 𝐵 / 𝐵 ) / ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) ) |
| 10 |
2 4
|
dividd |
⊢ ( 𝜑 → ( 𝐵 / 𝐵 ) = 1 ) |
| 11 |
1 2 4
|
divcan4d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐵 ) / ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) = ( 1 / 𝐴 ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 1 / 𝐴 ) = ( 1 / 𝐴 ) ) |
| 14 |
9 12 13
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐴 · 𝐵 ) ) = ( 1 / 𝐴 ) ) |