Metamath Proof Explorer


Theorem dstfrvinc

Description: A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 ( 𝜑𝑃 ∈ Prob )
dstfrv.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
dstfrv.3 ( 𝜑𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋RV/𝑐𝑥 ) ) ) )
dstfrvinc.1 ( 𝜑𝐴 ∈ ℝ )
dstfrvinc.2 ( 𝜑𝐵 ∈ ℝ )
dstfrvinc.3 ( 𝜑𝐴𝐵 )
Assertion dstfrvinc ( 𝜑 → ( 𝐹𝐴 ) ≤ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 dstfrv.1 ( 𝜑𝑃 ∈ Prob )
2 dstfrv.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
3 dstfrv.3 ( 𝜑𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋RV/𝑐𝑥 ) ) ) )
4 dstfrvinc.1 ( 𝜑𝐴 ∈ ℝ )
5 dstfrvinc.2 ( 𝜑𝐵 ∈ ℝ )
6 dstfrvinc.3 ( 𝜑𝐴𝐵 )
7 domprobmeas ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) )
8 1 7 syl ( 𝜑𝑃 ∈ ( measures ‘ dom 𝑃 ) )
9 1 2 4 orvclteel ( 𝜑 → ( 𝑋RV/𝑐𝐴 ) ∈ dom 𝑃 )
10 1 2 5 orvclteel ( 𝜑 → ( 𝑋RV/𝑐𝐵 ) ∈ dom 𝑃 )
11 1 2 4 5 6 orvclteinc ( 𝜑 → ( 𝑋RV/𝑐𝐴 ) ⊆ ( 𝑋RV/𝑐𝐵 ) )
12 8 9 10 11 measssd ( 𝜑 → ( 𝑃 ‘ ( 𝑋RV/𝑐𝐴 ) ) ≤ ( 𝑃 ‘ ( 𝑋RV/𝑐𝐵 ) ) )
13 simpr ( ( 𝜑𝑥 = 𝐴 ) → 𝑥 = 𝐴 )
14 13 oveq2d ( ( 𝜑𝑥 = 𝐴 ) → ( 𝑋RV/𝑐𝑥 ) = ( 𝑋RV/𝑐𝐴 ) )
15 14 fveq2d ( ( 𝜑𝑥 = 𝐴 ) → ( 𝑃 ‘ ( 𝑋RV/𝑐𝑥 ) ) = ( 𝑃 ‘ ( 𝑋RV/𝑐𝐴 ) ) )
16 1 9 probvalrnd ( 𝜑 → ( 𝑃 ‘ ( 𝑋RV/𝑐𝐴 ) ) ∈ ℝ )
17 3 15 4 16 fvmptd ( 𝜑 → ( 𝐹𝐴 ) = ( 𝑃 ‘ ( 𝑋RV/𝑐𝐴 ) ) )
18 simpr ( ( 𝜑𝑥 = 𝐵 ) → 𝑥 = 𝐵 )
19 18 oveq2d ( ( 𝜑𝑥 = 𝐵 ) → ( 𝑋RV/𝑐𝑥 ) = ( 𝑋RV/𝑐𝐵 ) )
20 19 fveq2d ( ( 𝜑𝑥 = 𝐵 ) → ( 𝑃 ‘ ( 𝑋RV/𝑐𝑥 ) ) = ( 𝑃 ‘ ( 𝑋RV/𝑐𝐵 ) ) )
21 1 10 probvalrnd ( 𝜑 → ( 𝑃 ‘ ( 𝑋RV/𝑐𝐵 ) ) ∈ ℝ )
22 3 20 5 21 fvmptd ( 𝜑 → ( 𝐹𝐵 ) = ( 𝑃 ‘ ( 𝑋RV/𝑐𝐵 ) ) )
23 12 17 22 3brtr4d ( 𝜑 → ( 𝐹𝐴 ) ≤ ( 𝐹𝐵 ) )