| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
| 2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
| 3 |
|
dstfrv.3 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) ) ) |
| 4 |
|
dstfrvinc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 5 |
|
dstfrvinc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 6 |
|
dstfrvinc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 7 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
| 9 |
1 2 4
|
orvclteel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ∈ dom 𝑃 ) |
| 10 |
1 2 5
|
orvclteel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ∈ dom 𝑃 ) |
| 11 |
1 2 4 5 6
|
orvclteinc |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ⊆ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) |
| 12 |
8 9 10 11
|
measssd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ≤ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
| 14 |
13
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ) |
| 16 |
1 9
|
probvalrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ∈ ℝ ) |
| 17 |
3 15 4 16
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 19 |
18
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
| 21 |
1 10
|
probvalrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ∈ ℝ ) |
| 22 |
3 20 5 21
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
| 23 |
12 17 22
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐵 ) ) |