| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstfrv.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | dstfrv.3 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) ) ) ) | 
						
							| 4 |  | dstfrvinc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | dstfrvinc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | dstfrvinc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 7 |  | domprobmeas | ⊢ ( 𝑃  ∈  Prob  →  𝑃  ∈  ( measures ‘ dom  𝑃 ) ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( measures ‘ dom  𝑃 ) ) | 
						
							| 9 | 1 2 4 | orvclteel | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  ∈  dom  𝑃 ) | 
						
							| 10 | 1 2 5 | orvclteel | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐵 )  ∈  dom  𝑃 ) | 
						
							| 11 | 1 2 4 5 6 | orvclteinc | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  ⊆  ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) | 
						
							| 12 | 8 9 10 11 | measssd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) )  ≤  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝑥  =  𝐴 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑥 )  =  ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) ) ) | 
						
							| 16 | 1 9 | probvalrnd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) )  ∈  ℝ ) | 
						
							| 17 | 3 15 4 16 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝑥  =  𝐵 ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑥 )  =  ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) ) | 
						
							| 21 | 1 10 | probvalrnd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) )  ∈  ℝ ) | 
						
							| 22 | 3 20 5 21 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) ) | 
						
							| 23 | 12 17 22 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝐵 ) ) |