Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
dstfrv.3 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) ) ) |
4 |
|
dstfrvinc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
dstfrvinc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
6 |
|
dstfrvinc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
7 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
9 |
1 2 4
|
orvclteel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ∈ dom 𝑃 ) |
10 |
1 2 5
|
orvclteel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ∈ dom 𝑃 ) |
11 |
1 2 4 5 6
|
orvclteinc |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ⊆ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) |
12 |
8 9 10 11
|
measssd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ≤ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ) |
16 |
1 9
|
probvalrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ∈ ℝ ) |
17 |
3 15 4 16
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
19 |
18
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
21 |
1 10
|
probvalrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ∈ ℝ ) |
22 |
3 20 5 21
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) ) |
23 |
12 17 22
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐵 ) ) |