| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstfrv.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | dstfrv.3 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  =  ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) | 
						
							| 5 |  | domprobmeas | ⊢ ( 𝑃  ∈  Prob  →  𝑃  ∈  ( measures ‘ dom  𝑃 ) ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( measures ‘ dom  𝑃 ) ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑃  ∈  Prob ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ ) | 
						
							| 10 | 9 | nnred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℝ ) | 
						
							| 11 | 7 8 10 | orvclteel | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑖 )  ∈  dom  𝑃 ) | 
						
							| 12 | 11 | fmpttd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) : ℕ ⟶ dom  𝑃 ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  Prob ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 16 | 15 | nnred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ ) | 
						
							| 17 | 15 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 18 | 17 | nnred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 19 | 16 | lep1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ≤  ( 𝑛  +  1 ) ) | 
						
							| 20 | 13 14 16 18 19 | orvclteinc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑛 )  ⊆  ( 𝑋 ∘RV/𝑐  ≤  ( 𝑛  +  1 ) ) ) | 
						
							| 21 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  =  𝑛 )  →  𝑖  =  𝑛 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  =  𝑛 )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑖 )  =  ( 𝑋 ∘RV/𝑐  ≤  𝑛 ) ) | 
						
							| 24 | 13 14 16 | orvclteel | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑛 )  ∈  dom  𝑃 ) | 
						
							| 25 | 21 23 15 24 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ‘ 𝑛 )  =  ( 𝑋 ∘RV/𝑐  ≤  𝑛 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  =  ( 𝑛  +  1 ) )  →  𝑖  =  ( 𝑛  +  1 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  =  ( 𝑛  +  1 ) )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑖 )  =  ( 𝑋 ∘RV/𝑐  ≤  ( 𝑛  +  1 ) ) ) | 
						
							| 28 | 13 14 18 | orvclteel | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑋 ∘RV/𝑐  ≤  ( 𝑛  +  1 ) )  ∈  dom  𝑃 ) | 
						
							| 29 | 21 27 17 28 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 𝑋 ∘RV/𝑐  ≤  ( 𝑛  +  1 ) ) ) | 
						
							| 30 | 20 25 29 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ‘ 𝑛 )  ⊆  ( ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 31 | 4 6 12 30 | meascnbl | ⊢ ( 𝜑  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ( ⇝𝑡 ‘ ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) ) ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ) | 
						
							| 32 |  | measfn | ⊢ ( 𝑃  ∈  ( measures ‘ dom  𝑃 )  →  𝑃  Fn  dom  𝑃 ) | 
						
							| 33 |  | dffn5 | ⊢ ( 𝑃  Fn  dom  𝑃  ↔  𝑃  =  ( 𝑎  ∈  dom  𝑃  ↦  ( 𝑃 ‘ 𝑎 ) ) ) | 
						
							| 34 | 33 | biimpi | ⊢ ( 𝑃  Fn  dom  𝑃  →  𝑃  =  ( 𝑎  ∈  dom  𝑃  ↦  ( 𝑃 ‘ 𝑎 ) ) ) | 
						
							| 35 | 6 32 34 | 3syl | ⊢ ( 𝜑  →  𝑃  =  ( 𝑎  ∈  dom  𝑃  ↦  ( 𝑃 ‘ 𝑎 ) ) ) | 
						
							| 36 |  | prob01 | ⊢ ( ( 𝑃  ∈  Prob  ∧  𝑎  ∈  dom  𝑃 )  →  ( 𝑃 ‘ 𝑎 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 37 | 1 36 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  dom  𝑃 )  →  ( 𝑃 ‘ 𝑎 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 38 | 35 37 | fmpt3d | ⊢ ( 𝜑  →  𝑃 : dom  𝑃 ⟶ ( 0 [,] 1 ) ) | 
						
							| 39 |  | fco | ⊢ ( ( 𝑃 : dom  𝑃 ⟶ ( 0 [,] 1 )  ∧  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) : ℕ ⟶ dom  𝑃 )  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) | 
						
							| 40 | 38 12 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) | 
						
							| 41 | 1 2 | dstfrvunirn | ⊢ ( 𝜑  →  ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  =  ∪  dom  𝑃 ) | 
						
							| 42 | 1 | unveldomd | ⊢ ( 𝜑  →  ∪  dom  𝑃  ∈  dom  𝑃 ) | 
						
							| 43 | 41 42 | eqeltrd | ⊢ ( 𝜑  →  ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  ∈  dom  𝑃 ) | 
						
							| 44 |  | prob01 | ⊢ ( ( 𝑃  ∈  Prob  ∧  ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  ∈  dom  𝑃 )  →  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 45 | 1 43 44 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 46 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 47 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 48 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 49 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 50 |  | ltpnf | ⊢ ( 1  ∈  ℝ  →  1  <  +∞ ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ 1  <  +∞ | 
						
							| 52 |  | iccssico | ⊢ ( ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  ( 0  ≤  0  ∧  1  <  +∞ ) )  →  ( 0 [,] 1 )  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 53 | 46 47 48 51 52 | mp4an | ⊢ ( 0 [,] 1 )  ⊆  ( 0 [,) +∞ ) | 
						
							| 54 | 4 40 45 53 | lmlimxrge0 | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ( ⇝𝑡 ‘ ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) ) ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  ↔  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  ⇝  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ) ) | 
						
							| 55 | 31 54 | mpbid | ⊢ ( 𝜑  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  ⇝  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ) | 
						
							| 56 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑋 ∘RV/𝑐  ≤  𝑖 )  →  ( 𝑃 ‘ 𝑎 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) | 
						
							| 58 | 11 56 35 57 | fmptco | ⊢ ( 𝜑  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ) | 
						
							| 59 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) ) ) ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  𝑥  =  𝑖 )  →  𝑥  =  𝑖 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  𝑥  =  𝑖 )  →  ( 𝑋 ∘RV/𝑐  ≤  𝑥 )  =  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  𝑥  =  𝑖 )  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) | 
						
							| 63 | 7 11 | probvalrnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) )  ∈  ℝ ) | 
						
							| 64 | 59 62 10 63 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) | 
						
							| 65 | 64 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) ) ) | 
						
							| 66 | 58 65 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑃  ∘  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 67 | 41 | fveq2d | ⊢ ( 𝜑  →  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  =  ( 𝑃 ‘ ∪  dom  𝑃 ) ) | 
						
							| 68 |  | probtot | ⊢ ( 𝑃  ∈  Prob  →  ( 𝑃 ‘ ∪  dom  𝑃 )  =  1 ) | 
						
							| 69 | 1 68 | syl | ⊢ ( 𝜑  →  ( 𝑃 ‘ ∪  dom  𝑃 )  =  1 ) | 
						
							| 70 | 67 69 | eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ∪  ran  ( 𝑖  ∈  ℕ  ↦  ( 𝑋 ∘RV/𝑐  ≤  𝑖 ) ) )  =  1 ) | 
						
							| 71 | 55 66 70 | 3brtr3d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) )  ⇝  1 ) | 
						
							| 72 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 73 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 74 | 73 | mptex | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  ≤  𝑥 ) ) )  ∈  V | 
						
							| 75 | 3 74 | eqeltrdi | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 76 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 77 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 78 | 76 77 | climmpt | ⊢ ( ( 1  ∈  ℤ  ∧  𝐹  ∈  V )  →  ( 𝐹  ⇝  1  ↔  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) )  ⇝  1 ) ) | 
						
							| 79 | 72 75 78 | sylancr | ⊢ ( 𝜑  →  ( 𝐹  ⇝  1  ↔  ( 𝑖  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑖 ) )  ⇝  1 ) ) | 
						
							| 80 | 71 79 | mpbird | ⊢ ( 𝜑  →  𝐹  ⇝  1 ) |