Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
dstfrv.3 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) ) ) |
4 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
5 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑃 ∈ Prob ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
10 |
9
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℝ ) |
11 |
7 8 10
|
orvclteel |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ∈ dom 𝑃 ) |
12 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) : ℕ ⟶ dom 𝑃 ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ Prob ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
16 |
15
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
17 |
15
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
18 |
17
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
19 |
16
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≤ ( 𝑛 + 1 ) ) |
20 |
13 14 16 18 19
|
orvclteinc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ⊆ ( 𝑋 ∘RV/𝑐 ≤ ( 𝑛 + 1 ) ) ) |
21 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 = 𝑛 ) → 𝑖 = 𝑛 ) |
23 |
22
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 = 𝑛 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
24 |
13 14 16
|
orvclteel |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∈ dom 𝑃 ) |
25 |
21 23 15 24
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ‘ 𝑛 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 = ( 𝑛 + 1 ) ) → 𝑖 = ( 𝑛 + 1 ) ) |
27 |
26
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 = ( 𝑛 + 1 ) ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) = ( 𝑋 ∘RV/𝑐 ≤ ( 𝑛 + 1 ) ) ) |
28 |
13 14 18
|
orvclteel |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ∘RV/𝑐 ≤ ( 𝑛 + 1 ) ) ∈ dom 𝑃 ) |
29 |
21 27 17 28
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑋 ∘RV/𝑐 ≤ ( 𝑛 + 1 ) ) ) |
30 |
20 25 29
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ‘ ( 𝑛 + 1 ) ) ) |
31 |
4 6 12 30
|
meascnbl |
⊢ ( 𝜑 → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ( ⇝𝑡 ‘ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ) |
32 |
|
measfn |
⊢ ( 𝑃 ∈ ( measures ‘ dom 𝑃 ) → 𝑃 Fn dom 𝑃 ) |
33 |
|
dffn5 |
⊢ ( 𝑃 Fn dom 𝑃 ↔ 𝑃 = ( 𝑎 ∈ dom 𝑃 ↦ ( 𝑃 ‘ 𝑎 ) ) ) |
34 |
33
|
biimpi |
⊢ ( 𝑃 Fn dom 𝑃 → 𝑃 = ( 𝑎 ∈ dom 𝑃 ↦ ( 𝑃 ‘ 𝑎 ) ) ) |
35 |
6 32 34
|
3syl |
⊢ ( 𝜑 → 𝑃 = ( 𝑎 ∈ dom 𝑃 ↦ ( 𝑃 ‘ 𝑎 ) ) ) |
36 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝑎 ) ∈ ( 0 [,] 1 ) ) |
37 |
1 36
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝑎 ) ∈ ( 0 [,] 1 ) ) |
38 |
35 37
|
fmpt3d |
⊢ ( 𝜑 → 𝑃 : dom 𝑃 ⟶ ( 0 [,] 1 ) ) |
39 |
|
fco |
⊢ ( ( 𝑃 : dom 𝑃 ⟶ ( 0 [,] 1 ) ∧ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) : ℕ ⟶ dom 𝑃 ) → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) |
40 |
38 12 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) |
41 |
1 2
|
dstfrvunirn |
⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) = ∪ dom 𝑃 ) |
42 |
1
|
unveldomd |
⊢ ( 𝜑 → ∪ dom 𝑃 ∈ dom 𝑃 ) |
43 |
41 42
|
eqeltrd |
⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ∈ dom 𝑃 ) |
44 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ∈ ( 0 [,] 1 ) ) |
45 |
1 43 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ∈ ( 0 [,] 1 ) ) |
46 |
|
0xr |
⊢ 0 ∈ ℝ* |
47 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
48 |
|
0le0 |
⊢ 0 ≤ 0 |
49 |
|
1re |
⊢ 1 ∈ ℝ |
50 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
51 |
49 50
|
ax-mp |
⊢ 1 < +∞ |
52 |
|
iccssico |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 [,] 1 ) ⊆ ( 0 [,) +∞ ) ) |
53 |
46 47 48 51 52
|
mp4an |
⊢ ( 0 [,] 1 ) ⊆ ( 0 [,) +∞ ) |
54 |
4 40 45 53
|
lmlimxrge0 |
⊢ ( 𝜑 → ( ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ( ⇝𝑡 ‘ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ↔ ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ⇝ ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ) ) |
55 |
31 54
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ⇝ ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ) |
56 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) |
57 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) → ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) |
58 |
11 56 35 57
|
fmptco |
⊢ ( 𝜑 → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ) |
59 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) ) ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑥 = 𝑖 ) → 𝑥 = 𝑖 ) |
61 |
60
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑥 = 𝑖 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) = ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) |
62 |
61
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑥 = 𝑖 ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) |
63 |
7 11
|
probvalrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ∈ ℝ ) |
64 |
59 62 10 63
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) |
65 |
64
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) ) |
66 |
58 65
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑃 ∘ ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) ) |
67 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) = ( 𝑃 ‘ ∪ dom 𝑃 ) ) |
68 |
|
probtot |
⊢ ( 𝑃 ∈ Prob → ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) |
69 |
1 68
|
syl |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) |
70 |
67 69
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ ran ( 𝑖 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑖 ) ) ) = 1 ) |
71 |
55 66 70
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) ⇝ 1 ) |
72 |
|
1z |
⊢ 1 ∈ ℤ |
73 |
|
reex |
⊢ ℝ ∈ V |
74 |
73
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐 ≤ 𝑥 ) ) ) ∈ V |
75 |
3 74
|
eqeltrdi |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
76 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
77 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) |
78 |
76 77
|
climmpt |
⊢ ( ( 1 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 1 ↔ ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) ⇝ 1 ) ) |
79 |
72 75 78
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ⇝ 1 ↔ ( 𝑖 ∈ ℕ ↦ ( 𝐹 ‘ 𝑖 ) ) ⇝ 1 ) ) |
80 |
71 79
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ 1 ) |