| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstfrv.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvclteel.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 5 | 4 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 6 |  | mnflt | ⊢ ( 𝑥  ∈  ℝ  →  -∞  <  𝑥 ) | 
						
							| 7 | 6 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) )  →  -∞  <  𝑥 ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) )  →  𝑥  ≤  𝐴 ) | 
						
							| 9 | 7 8 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) )  →  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) | 
						
							| 10 | 5 9 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) )  →  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 13 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  -∞  <  𝑥 ) | 
						
							| 14 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  𝑥  ≤  𝐴 ) | 
						
							| 15 |  | xrre | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ∈  ℝ )  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 16 | 11 12 13 14 15 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 16 14 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 ) ) | 
						
							| 18 | 10 17 | impbida | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  ↔  ( 𝑥  ∈  ℝ*  ∧  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) ) ) ) | 
						
							| 19 | 18 | rabbidva2 | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  =  { 𝑥  ∈  ℝ*  ∣  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) } ) | 
						
							| 20 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 21 | 3 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 22 |  | iocval | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( -∞ (,] 𝐴 )  =  { 𝑥  ∈  ℝ*  ∣  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) } ) | 
						
							| 23 | 20 21 22 | sylancr | ⊢ ( 𝜑  →  ( -∞ (,] 𝐴 )  =  { 𝑥  ∈  ℝ*  ∣  ( -∞  <  𝑥  ∧  𝑥  ≤  𝐴 ) } ) | 
						
							| 24 | 19 23 | eqtr4d | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  =  ( -∞ (,] 𝐴 ) ) | 
						
							| 25 |  | iocmnfcld | ⊢ ( 𝐴  ∈  ℝ  →  ( -∞ (,] 𝐴 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  ( -∞ (,] 𝐴 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 27 | 24 26 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 28 | 1 2 3 27 | orrvccel | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  ∈  dom  𝑃 ) |