Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
orvclteel.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
5 |
4
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) → 𝑥 ∈ ℝ* ) |
6 |
|
mnflt |
⊢ ( 𝑥 ∈ ℝ → -∞ < 𝑥 ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) → -∞ < 𝑥 ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) → 𝑥 ≤ 𝐴 ) |
9 |
7 8
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) → ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) |
10 |
5 9
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) → ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → 𝑥 ∈ ℝ* ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
13 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → -∞ < 𝑥 ) |
14 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → 𝑥 ≤ 𝐴 ) |
15 |
|
xrre |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
16 |
11 12 13 14 15
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → 𝑥 ∈ ℝ ) |
17 |
16 14
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ) |
18 |
10 17
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) ) |
19 |
18
|
rabbidva2 |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } = { 𝑥 ∈ ℝ* ∣ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) } ) |
20 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
21 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
22 |
|
iocval |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ (,] 𝐴 ) = { 𝑥 ∈ ℝ* ∣ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) } ) |
23 |
20 21 22
|
sylancr |
⊢ ( 𝜑 → ( -∞ (,] 𝐴 ) = { 𝑥 ∈ ℝ* ∣ ( -∞ < 𝑥 ∧ 𝑥 ≤ 𝐴 ) } ) |
24 |
19 23
|
eqtr4d |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } = ( -∞ (,] 𝐴 ) ) |
25 |
|
iocmnfcld |
⊢ ( 𝐴 ∈ ℝ → ( -∞ (,] 𝐴 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → ( -∞ (,] 𝐴 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
27 |
24 26
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
28 |
1 2 3 27
|
orrvccel |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ∈ dom 𝑃 ) |