| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstfrv.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvclteel.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | dstfrvel.1 | ⊢ ( 𝜑  →  𝐵  ∈  ∪  dom  𝑃 ) | 
						
							| 5 |  | dstfrvel.2 | ⊢ ( 𝜑  →  ( 𝑋 ‘ 𝐵 )  ≤  𝐴 ) | 
						
							| 6 | 1 2 | rrvvf | ⊢ ( 𝜑  →  𝑋 : ∪  dom  𝑃 ⟶ ℝ ) | 
						
							| 7 | 6 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑋 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑋 ‘ 𝐵 )  →  ( 𝑥  ≤  𝐴  ↔  ( 𝑋 ‘ 𝐵 )  ≤  𝐴 ) ) | 
						
							| 9 | 8 | elrab | ⊢ ( ( 𝑋 ‘ 𝐵 )  ∈  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ↔  ( ( 𝑋 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝑋 ‘ 𝐵 )  ≤  𝐴 ) ) | 
						
							| 10 | 7 5 9 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑋 ‘ 𝐵 )  ∈  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) | 
						
							| 11 | 6 | ffund | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 12 | 1 2 | rrvdm | ⊢ ( 𝜑  →  dom  𝑋  =  ∪  dom  𝑃 ) | 
						
							| 13 | 4 12 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  dom  𝑋 ) | 
						
							| 14 |  | fvimacnv | ⊢ ( ( Fun  𝑋  ∧  𝐵  ∈  dom  𝑋 )  →  ( ( 𝑋 ‘ 𝐵 )  ∈  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ↔  𝐵  ∈  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) ) ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋 ‘ 𝐵 )  ∈  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ↔  𝐵  ∈  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) ) ) | 
						
							| 16 | 10 15 | mpbid | ⊢ ( 𝜑  →  𝐵  ∈  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) ) | 
						
							| 17 | 1 2 3 | orrvcval4 | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  =  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) ) | 
						
							| 18 | 16 17 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑋 ∘RV/𝑐  ≤  𝐴 ) ) |