Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 1 ∈ ℝ ) |
4 |
1 2
|
rrvvf |
⊢ ( 𝜑 → 𝑋 : ∪ dom 𝑃 ⟶ ℝ ) |
5 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) |
6 |
3 5
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ∈ ℝ ) |
7 |
|
breq2 |
⊢ ( 1 = if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) → ( 1 ≤ 1 ↔ 1 ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ) |
8 |
|
breq2 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) → ( 1 ≤ ( 𝑋 ‘ 𝑥 ) ↔ 1 ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ) |
9 |
|
1le1 |
⊢ 1 ≤ 1 |
10 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ( 𝑋 ‘ 𝑥 ) < 1 ) → 1 ≤ 1 ) |
11 |
3 5
|
lenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( 1 ≤ ( 𝑋 ‘ 𝑥 ) ↔ ¬ ( 𝑋 ‘ 𝑥 ) < 1 ) ) |
12 |
11
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ¬ ( 𝑋 ‘ 𝑥 ) < 1 ) → 1 ≤ ( 𝑋 ‘ 𝑥 ) ) |
13 |
7 8 10 12
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 1 ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) |
14 |
|
flge1nn |
⊢ ( ( if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ∈ ℝ ∧ 1 ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) → ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ∈ ℕ ) |
15 |
6 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ∈ ℕ ) |
16 |
15
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ∈ ℕ ) |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 𝑃 ∈ Prob ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
19 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ∈ ℝ ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 𝑥 ∈ ∪ dom 𝑃 ) |
21 |
|
breq2 |
⊢ ( 1 = if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) → ( ( 𝑋 ‘ 𝑥 ) ≤ 1 ↔ ( 𝑋 ‘ 𝑥 ) ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ) |
22 |
|
breq2 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) → ( ( 𝑋 ‘ 𝑥 ) ≤ ( 𝑋 ‘ 𝑥 ) ↔ ( 𝑋 ‘ 𝑥 ) ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) ) |
23 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ( 𝑋 ‘ 𝑥 ) < 1 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) |
24 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ( 𝑋 ‘ 𝑥 ) < 1 ) → 1 ∈ ℝ ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ( 𝑋 ‘ 𝑥 ) < 1 ) → ( 𝑋 ‘ 𝑥 ) < 1 ) |
26 |
23 24 25
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ( 𝑋 ‘ 𝑥 ) < 1 ) → ( 𝑋 ‘ 𝑥 ) ≤ 1 ) |
27 |
5
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( 𝑋 ‘ 𝑥 ) ≤ ( 𝑋 ‘ 𝑥 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) ∧ ¬ ( 𝑋 ‘ 𝑥 ) < 1 ) → ( 𝑋 ‘ 𝑥 ) ≤ ( 𝑋 ‘ 𝑥 ) ) |
29 |
21 22 26 28
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( 𝑋 ‘ 𝑥 ) ≤ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) |
30 |
|
fllep1 |
⊢ ( if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ∈ ℝ → if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) |
31 |
6 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) |
32 |
5 6 19 29 31
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ( 𝑋 ‘ 𝑥 ) ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) |
33 |
17 18 19 20 32
|
dstfrvel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) = ( 𝑋 ∘RV/𝑐 ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) ) |
35 |
34
|
eleq2d |
⊢ ( 𝑛 = ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) → ( 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ↔ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) ) ) |
36 |
35
|
rspcev |
⊢ ( ( ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ∈ ℕ ∧ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ ( ( ⌊ ‘ if ( ( 𝑋 ‘ 𝑥 ) < 1 , 1 , ( 𝑋 ‘ 𝑥 ) ) ) + 1 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
37 |
16 33 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ dom 𝑃 ) → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
38 |
37
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ dom 𝑃 → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) ) |
39 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ Prob ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
42 |
41
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
43 |
39 40 42
|
orvclteel |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∈ dom 𝑃 ) |
44 |
|
elunii |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∧ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∈ dom 𝑃 ) → 𝑥 ∈ ∪ dom 𝑃 ) |
45 |
44
|
expcom |
⊢ ( ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∈ dom 𝑃 → ( 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) → 𝑥 ∈ ∪ dom 𝑃 ) ) |
46 |
43 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) → 𝑥 ∈ ∪ dom 𝑃 ) ) |
47 |
46
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) → 𝑥 ∈ ∪ dom 𝑃 ) ) |
48 |
38 47
|
impbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ dom 𝑃 ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) ) |
49 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
50 |
48 49
|
bitr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ dom 𝑃 ↔ 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) ) |
51 |
50
|
eqrdv |
⊢ ( 𝜑 → ∪ dom 𝑃 = ∪ 𝑛 ∈ ℕ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
52 |
|
ovex |
⊢ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ∈ V |
53 |
52
|
dfiun3 |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) |
54 |
51 53
|
eqtr2di |
⊢ ( 𝜑 → ∪ ran ( 𝑛 ∈ ℕ ↦ ( 𝑋 ∘RV/𝑐 ≤ 𝑛 ) ) = ∪ dom 𝑃 ) |