Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
|
2 |
|
dstfrv.2 |
|
3 |
|
1red |
|
4 |
1 2
|
rrvvf |
|
5 |
4
|
ffvelrnda |
|
6 |
3 5
|
ifcld |
|
7 |
|
breq2 |
|
8 |
|
breq2 |
|
9 |
|
1le1 |
|
10 |
9
|
a1i |
|
11 |
3 5
|
lenltd |
|
12 |
11
|
biimpar |
|
13 |
7 8 10 12
|
ifbothda |
|
14 |
|
flge1nn |
|
15 |
6 13 14
|
syl2anc |
|
16 |
15
|
peano2nnd |
|
17 |
1
|
adantr |
|
18 |
2
|
adantr |
|
19 |
16
|
nnred |
|
20 |
|
simpr |
|
21 |
|
breq2 |
|
22 |
|
breq2 |
|
23 |
5
|
adantr |
|
24 |
|
1red |
|
25 |
|
simpr |
|
26 |
23 24 25
|
ltled |
|
27 |
5
|
leidd |
|
28 |
27
|
adantr |
|
29 |
21 22 26 28
|
ifbothda |
|
30 |
|
fllep1 |
|
31 |
6 30
|
syl |
|
32 |
5 6 19 29 31
|
letrd |
|
33 |
17 18 19 20 32
|
dstfrvel |
|
34 |
|
oveq2 |
|
35 |
34
|
eleq2d |
|
36 |
35
|
rspcev |
|
37 |
16 33 36
|
syl2anc |
|
38 |
37
|
ex |
|
39 |
1
|
adantr |
|
40 |
2
|
adantr |
|
41 |
|
simpr |
|
42 |
41
|
nnred |
|
43 |
39 40 42
|
orvclteel |
|
44 |
|
elunii |
|
45 |
44
|
expcom |
|
46 |
43 45
|
syl |
|
47 |
46
|
rexlimdva |
|
48 |
38 47
|
impbid |
|
49 |
|
eliun |
|
50 |
48 49
|
bitr4di |
|
51 |
50
|
eqrdv |
|
52 |
|
ovex |
|
53 |
52
|
dfiun3 |
|
54 |
51 53
|
eqtr2di |
|