Metamath Proof Explorer


Theorem dstfrvunirn

Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φ P Prob
dstfrv.2 φ X RndVar P
Assertion dstfrvunirn φ ran n X RV/c n = dom P

Proof

Step Hyp Ref Expression
1 dstfrv.1 φ P Prob
2 dstfrv.2 φ X RndVar P
3 1red φ x dom P 1
4 1 2 rrvvf φ X : dom P
5 4 ffvelrnda φ x dom P X x
6 3 5 ifcld φ x dom P if X x < 1 1 X x
7 breq2 1 = if X x < 1 1 X x 1 1 1 if X x < 1 1 X x
8 breq2 X x = if X x < 1 1 X x 1 X x 1 if X x < 1 1 X x
9 1le1 1 1
10 9 a1i φ x dom P X x < 1 1 1
11 3 5 lenltd φ x dom P 1 X x ¬ X x < 1
12 11 biimpar φ x dom P ¬ X x < 1 1 X x
13 7 8 10 12 ifbothda φ x dom P 1 if X x < 1 1 X x
14 flge1nn if X x < 1 1 X x 1 if X x < 1 1 X x if X x < 1 1 X x
15 6 13 14 syl2anc φ x dom P if X x < 1 1 X x
16 15 peano2nnd φ x dom P if X x < 1 1 X x + 1
17 1 adantr φ x dom P P Prob
18 2 adantr φ x dom P X RndVar P
19 16 nnred φ x dom P if X x < 1 1 X x + 1
20 simpr φ x dom P x dom P
21 breq2 1 = if X x < 1 1 X x X x 1 X x if X x < 1 1 X x
22 breq2 X x = if X x < 1 1 X x X x X x X x if X x < 1 1 X x
23 5 adantr φ x dom P X x < 1 X x
24 1red φ x dom P X x < 1 1
25 simpr φ x dom P X x < 1 X x < 1
26 23 24 25 ltled φ x dom P X x < 1 X x 1
27 5 leidd φ x dom P X x X x
28 27 adantr φ x dom P ¬ X x < 1 X x X x
29 21 22 26 28 ifbothda φ x dom P X x if X x < 1 1 X x
30 fllep1 if X x < 1 1 X x if X x < 1 1 X x if X x < 1 1 X x + 1
31 6 30 syl φ x dom P if X x < 1 1 X x if X x < 1 1 X x + 1
32 5 6 19 29 31 letrd φ x dom P X x if X x < 1 1 X x + 1
33 17 18 19 20 32 dstfrvel φ x dom P x X RV/c if X x < 1 1 X x + 1
34 oveq2 n = if X x < 1 1 X x + 1 X RV/c n = X RV/c if X x < 1 1 X x + 1
35 34 eleq2d n = if X x < 1 1 X x + 1 x X RV/c n x X RV/c if X x < 1 1 X x + 1
36 35 rspcev if X x < 1 1 X x + 1 x X RV/c if X x < 1 1 X x + 1 n x X RV/c n
37 16 33 36 syl2anc φ x dom P n x X RV/c n
38 37 ex φ x dom P n x X RV/c n
39 1 adantr φ n P Prob
40 2 adantr φ n X RndVar P
41 simpr φ n n
42 41 nnred φ n n
43 39 40 42 orvclteel φ n X RV/c n dom P
44 elunii x X RV/c n X RV/c n dom P x dom P
45 44 expcom X RV/c n dom P x X RV/c n x dom P
46 43 45 syl φ n x X RV/c n x dom P
47 46 rexlimdva φ n x X RV/c n x dom P
48 38 47 impbid φ x dom P n x X RV/c n
49 eliun x n X RV/c n n x X RV/c n
50 48 49 bitr4di φ x dom P x n X RV/c n
51 50 eqrdv φ dom P = n X RV/c n
52 ovex X RV/c n V
53 52 dfiun3 n X RV/c n = ran n X RV/c n
54 51 53 eqtr2di φ ran n X RV/c n = dom P