Metamath Proof Explorer


Theorem dstfrvel

Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
orvclteel.1 φA
dstfrvel.1 φBdomP
dstfrvel.2 φXBA
Assertion dstfrvel φBXRV/cA

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 orvclteel.1 φA
4 dstfrvel.1 φBdomP
5 dstfrvel.2 φXBA
6 1 2 rrvvf φX:domP
7 6 4 ffvelcdmd φXB
8 breq1 x=XBxAXBA
9 8 elrab XBx|xAXBXBA
10 7 5 9 sylanbrc φXBx|xA
11 6 ffund φFunX
12 1 2 rrvdm φdomX=domP
13 4 12 eleqtrrd φBdomX
14 fvimacnv FunXBdomXXBx|xABX-1x|xA
15 11 13 14 syl2anc φXBx|xABX-1x|xA
16 10 15 mpbid φBX-1x|xA
17 1 2 3 orrvcval4 φXRV/cA=X-1x|xA
18 16 17 eleqtrrd φBXRV/cA