| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstfrv.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvclteel.1 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | dstfrvel.1 |  |-  ( ph -> B e. U. dom P ) | 
						
							| 5 |  | dstfrvel.2 |  |-  ( ph -> ( X ` B ) <_ A ) | 
						
							| 6 | 1 2 | rrvvf |  |-  ( ph -> X : U. dom P --> RR ) | 
						
							| 7 | 6 4 | ffvelcdmd |  |-  ( ph -> ( X ` B ) e. RR ) | 
						
							| 8 |  | breq1 |  |-  ( x = ( X ` B ) -> ( x <_ A <-> ( X ` B ) <_ A ) ) | 
						
							| 9 | 8 | elrab |  |-  ( ( X ` B ) e. { x e. RR | x <_ A } <-> ( ( X ` B ) e. RR /\ ( X ` B ) <_ A ) ) | 
						
							| 10 | 7 5 9 | sylanbrc |  |-  ( ph -> ( X ` B ) e. { x e. RR | x <_ A } ) | 
						
							| 11 | 6 | ffund |  |-  ( ph -> Fun X ) | 
						
							| 12 | 1 2 | rrvdm |  |-  ( ph -> dom X = U. dom P ) | 
						
							| 13 | 4 12 | eleqtrrd |  |-  ( ph -> B e. dom X ) | 
						
							| 14 |  | fvimacnv |  |-  ( ( Fun X /\ B e. dom X ) -> ( ( X ` B ) e. { x e. RR | x <_ A } <-> B e. ( `' X " { x e. RR | x <_ A } ) ) ) | 
						
							| 15 | 11 13 14 | syl2anc |  |-  ( ph -> ( ( X ` B ) e. { x e. RR | x <_ A } <-> B e. ( `' X " { x e. RR | x <_ A } ) ) ) | 
						
							| 16 | 10 15 | mpbid |  |-  ( ph -> B e. ( `' X " { x e. RR | x <_ A } ) ) | 
						
							| 17 | 1 2 3 | orrvcval4 |  |-  ( ph -> ( X oRVC <_ A ) = ( `' X " { x e. RR | x <_ A } ) ) | 
						
							| 18 | 16 17 | eleqtrrd |  |-  ( ph -> B e. ( X oRVC <_ A ) ) |