Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstfrv.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvclteel.1 |
|- ( ph -> A e. RR ) |
4 |
|
dstfrvel.1 |
|- ( ph -> B e. U. dom P ) |
5 |
|
dstfrvel.2 |
|- ( ph -> ( X ` B ) <_ A ) |
6 |
1 2
|
rrvvf |
|- ( ph -> X : U. dom P --> RR ) |
7 |
6 4
|
ffvelrnd |
|- ( ph -> ( X ` B ) e. RR ) |
8 |
|
breq1 |
|- ( x = ( X ` B ) -> ( x <_ A <-> ( X ` B ) <_ A ) ) |
9 |
8
|
elrab |
|- ( ( X ` B ) e. { x e. RR | x <_ A } <-> ( ( X ` B ) e. RR /\ ( X ` B ) <_ A ) ) |
10 |
7 5 9
|
sylanbrc |
|- ( ph -> ( X ` B ) e. { x e. RR | x <_ A } ) |
11 |
6
|
ffund |
|- ( ph -> Fun X ) |
12 |
1 2
|
rrvdm |
|- ( ph -> dom X = U. dom P ) |
13 |
4 12
|
eleqtrrd |
|- ( ph -> B e. dom X ) |
14 |
|
fvimacnv |
|- ( ( Fun X /\ B e. dom X ) -> ( ( X ` B ) e. { x e. RR | x <_ A } <-> B e. ( `' X " { x e. RR | x <_ A } ) ) ) |
15 |
11 13 14
|
syl2anc |
|- ( ph -> ( ( X ` B ) e. { x e. RR | x <_ A } <-> B e. ( `' X " { x e. RR | x <_ A } ) ) ) |
16 |
10 15
|
mpbid |
|- ( ph -> B e. ( `' X " { x e. RR | x <_ A } ) ) |
17 |
1 2 3
|
orrvcval4 |
|- ( ph -> ( X oRVC <_ A ) = ( `' X " { x e. RR | x <_ A } ) ) |
18 |
16 17
|
eleqtrrd |
|- ( ph -> B e. ( X oRVC <_ A ) ) |