Metamath Proof Explorer


Theorem orvclteinc

Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φ P Prob
dstfrv.2 φ X RndVar P
orvclteinc.1 φ A
orvclteinc.2 φ B
orvclteinc.3 φ A B
Assertion orvclteinc φ X RV/c A X RV/c B

Proof

Step Hyp Ref Expression
1 dstfrv.1 φ P Prob
2 dstfrv.2 φ X RndVar P
3 orvclteinc.1 φ A
4 orvclteinc.2 φ B
5 orvclteinc.3 φ A B
6 1 2 rrvf2 φ X : dom X
7 6 ffund φ Fun X
8 simp2 φ x x A x
9 3 3ad2ant1 φ x x A A
10 4 3ad2ant1 φ x x A B
11 simp3 φ x x A x A
12 5 3ad2ant1 φ x x A A B
13 8 9 10 11 12 letrd φ x x A x B
14 13 3expia φ x x A x B
15 14 ss2rabdv φ x | x A x | x B
16 sspreima Fun X x | x A x | x B X -1 x | x A X -1 x | x B
17 7 15 16 syl2anc φ X -1 x | x A X -1 x | x B
18 1 2 3 orrvcval4 φ X RV/c A = X -1 x | x A
19 1 2 4 orrvcval4 φ X RV/c B = X -1 x | x B
20 17 18 19 3sstr4d φ X RV/c A X RV/c B