Metamath Proof Explorer


Theorem orvclteinc

Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1
|- ( ph -> P e. Prob )
dstfrv.2
|- ( ph -> X e. ( rRndVar ` P ) )
orvclteinc.1
|- ( ph -> A e. RR )
orvclteinc.2
|- ( ph -> B e. RR )
orvclteinc.3
|- ( ph -> A <_ B )
Assertion orvclteinc
|- ( ph -> ( X oRVC <_ A ) C_ ( X oRVC <_ B ) )

Proof

Step Hyp Ref Expression
1 dstfrv.1
 |-  ( ph -> P e. Prob )
2 dstfrv.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 orvclteinc.1
 |-  ( ph -> A e. RR )
4 orvclteinc.2
 |-  ( ph -> B e. RR )
5 orvclteinc.3
 |-  ( ph -> A <_ B )
6 1 2 rrvf2
 |-  ( ph -> X : dom X --> RR )
7 6 ffund
 |-  ( ph -> Fun X )
8 simp2
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x e. RR )
9 3 3ad2ant1
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> A e. RR )
10 4 3ad2ant1
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> B e. RR )
11 simp3
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ A )
12 5 3ad2ant1
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> A <_ B )
13 8 9 10 11 12 letrd
 |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ B )
14 13 3expia
 |-  ( ( ph /\ x e. RR ) -> ( x <_ A -> x <_ B ) )
15 14 ss2rabdv
 |-  ( ph -> { x e. RR | x <_ A } C_ { x e. RR | x <_ B } )
16 sspreima
 |-  ( ( Fun X /\ { x e. RR | x <_ A } C_ { x e. RR | x <_ B } ) -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) )
17 7 15 16 syl2anc
 |-  ( ph -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) )
18 1 2 3 orrvcval4
 |-  ( ph -> ( X oRVC <_ A ) = ( `' X " { x e. RR | x <_ A } ) )
19 1 2 4 orrvcval4
 |-  ( ph -> ( X oRVC <_ B ) = ( `' X " { x e. RR | x <_ B } ) )
20 17 18 19 3sstr4d
 |-  ( ph -> ( X oRVC <_ A ) C_ ( X oRVC <_ B ) )