| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstfrv.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvclteinc.1 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | orvclteinc.2 |  |-  ( ph -> B e. RR ) | 
						
							| 5 |  | orvclteinc.3 |  |-  ( ph -> A <_ B ) | 
						
							| 6 | 1 2 | rrvf2 |  |-  ( ph -> X : dom X --> RR ) | 
						
							| 7 | 6 | ffund |  |-  ( ph -> Fun X ) | 
						
							| 8 |  | simp2 |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x e. RR ) | 
						
							| 9 | 3 | 3ad2ant1 |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> A e. RR ) | 
						
							| 10 | 4 | 3ad2ant1 |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> B e. RR ) | 
						
							| 11 |  | simp3 |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ A ) | 
						
							| 12 | 5 | 3ad2ant1 |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> A <_ B ) | 
						
							| 13 | 8 9 10 11 12 | letrd |  |-  ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ B ) | 
						
							| 14 | 13 | 3expia |  |-  ( ( ph /\ x e. RR ) -> ( x <_ A -> x <_ B ) ) | 
						
							| 15 | 14 | ss2rabdv |  |-  ( ph -> { x e. RR | x <_ A } C_ { x e. RR | x <_ B } ) | 
						
							| 16 |  | sspreima |  |-  ( ( Fun X /\ { x e. RR | x <_ A } C_ { x e. RR | x <_ B } ) -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) ) | 
						
							| 17 | 7 15 16 | syl2anc |  |-  ( ph -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) ) | 
						
							| 18 | 1 2 3 | orrvcval4 |  |-  ( ph -> ( X oRVC <_ A ) = ( `' X " { x e. RR | x <_ A } ) ) | 
						
							| 19 | 1 2 4 | orrvcval4 |  |-  ( ph -> ( X oRVC <_ B ) = ( `' X " { x e. RR | x <_ B } ) ) | 
						
							| 20 | 17 18 19 | 3sstr4d |  |-  ( ph -> ( X oRVC <_ A ) C_ ( X oRVC <_ B ) ) |