Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstfrv.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvclteinc.1 |
|- ( ph -> A e. RR ) |
4 |
|
orvclteinc.2 |
|- ( ph -> B e. RR ) |
5 |
|
orvclteinc.3 |
|- ( ph -> A <_ B ) |
6 |
1 2
|
rrvf2 |
|- ( ph -> X : dom X --> RR ) |
7 |
6
|
ffund |
|- ( ph -> Fun X ) |
8 |
|
simp2 |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> x e. RR ) |
9 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> A e. RR ) |
10 |
4
|
3ad2ant1 |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> B e. RR ) |
11 |
|
simp3 |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ A ) |
12 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> A <_ B ) |
13 |
8 9 10 11 12
|
letrd |
|- ( ( ph /\ x e. RR /\ x <_ A ) -> x <_ B ) |
14 |
13
|
3expia |
|- ( ( ph /\ x e. RR ) -> ( x <_ A -> x <_ B ) ) |
15 |
14
|
ss2rabdv |
|- ( ph -> { x e. RR | x <_ A } C_ { x e. RR | x <_ B } ) |
16 |
|
sspreima |
|- ( ( Fun X /\ { x e. RR | x <_ A } C_ { x e. RR | x <_ B } ) -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) ) |
17 |
7 15 16
|
syl2anc |
|- ( ph -> ( `' X " { x e. RR | x <_ A } ) C_ ( `' X " { x e. RR | x <_ B } ) ) |
18 |
1 2 3
|
orrvcval4 |
|- ( ph -> ( X oRVC <_ A ) = ( `' X " { x e. RR | x <_ A } ) ) |
19 |
1 2 4
|
orrvcval4 |
|- ( ph -> ( X oRVC <_ B ) = ( `' X " { x e. RR | x <_ B } ) ) |
20 |
17 18 19
|
3sstr4d |
|- ( ph -> ( X oRVC <_ A ) C_ ( X oRVC <_ B ) ) |