| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dstfrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
| 2 |
|
dstfrv.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
| 3 |
|
orvclteinc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
orvclteinc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
orvclteinc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 6 |
1 2
|
rrvf2 |
⊢ ( 𝜑 → 𝑋 : dom 𝑋 ⟶ ℝ ) |
| 7 |
6
|
ffund |
⊢ ( 𝜑 → Fun 𝑋 ) |
| 8 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 9 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 10 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝑥 ≤ 𝐴 ) |
| 12 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝐴 ≤ 𝐵 ) |
| 13 |
8 9 10 11 12
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴 ) → 𝑥 ≤ 𝐵 ) |
| 14 |
13
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 → 𝑥 ≤ 𝐵 ) ) |
| 15 |
14
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ⊆ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵 } ) |
| 16 |
|
sspreima |
⊢ ( ( Fun 𝑋 ∧ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ⊆ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵 } ) → ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ) ⊆ ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵 } ) ) |
| 17 |
7 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ) ⊆ ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵 } ) ) |
| 18 |
1 2 3
|
orrvcval4 |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) = ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴 } ) ) |
| 19 |
1 2 4
|
orrvcval4 |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) = ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐵 } ) ) |
| 20 |
17 18 19
|
3sstr4d |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 ≤ 𝐴 ) ⊆ ( 𝑋 ∘RV/𝑐 ≤ 𝐵 ) ) |