| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstfrv.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvclteinc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | orvclteinc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | orvclteinc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 6 | 1 2 | rrvf2 | ⊢ ( 𝜑  →  𝑋 : dom  𝑋 ⟶ ℝ ) | 
						
							| 7 | 6 | ffund | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 9 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝑥  ≤  𝐴 ) | 
						
							| 12 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝐴  ≤  𝐵 ) | 
						
							| 13 | 8 9 10 11 12 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑥  ≤  𝐴 )  →  𝑥  ≤  𝐵 ) | 
						
							| 14 | 13 | 3expia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ≤  𝐴  →  𝑥  ≤  𝐵 ) ) | 
						
							| 15 | 14 | ss2rabdv | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ⊆  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐵 } ) | 
						
							| 16 |  | sspreima | ⊢ ( ( Fun  𝑋  ∧  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 }  ⊆  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐵 } )  →  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } )  ⊆  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐵 } ) ) | 
						
							| 17 | 7 15 16 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } )  ⊆  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐵 } ) ) | 
						
							| 18 | 1 2 3 | orrvcval4 | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  =  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐴 } ) ) | 
						
							| 19 | 1 2 4 | orrvcval4 | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐵 )  =  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  ≤  𝐵 } ) ) | 
						
							| 20 | 17 18 19 | 3sstr4d | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  ≤  𝐴 )  ⊆  ( 𝑋 ∘RV/𝑐  ≤  𝐵 ) ) |