| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstfrv.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvclteel.1 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 5 | 4 | ad2antrl |  |-  ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> x e. RR* ) | 
						
							| 6 |  | mnflt |  |-  ( x e. RR -> -oo < x ) | 
						
							| 7 | 6 | ad2antrl |  |-  ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> -oo < x ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> x <_ A ) | 
						
							| 9 | 7 8 | jca |  |-  ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> ( -oo < x /\ x <_ A ) ) | 
						
							| 10 | 5 9 | jca |  |-  ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x e. RR* ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> A e. RR ) | 
						
							| 13 |  | simprrl |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> -oo < x ) | 
						
							| 14 |  | simprrr |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x <_ A ) | 
						
							| 15 |  | xrre |  |-  ( ( ( x e. RR* /\ A e. RR ) /\ ( -oo < x /\ x <_ A ) ) -> x e. RR ) | 
						
							| 16 | 11 12 13 14 15 | syl22anc |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x e. RR ) | 
						
							| 17 | 16 14 | jca |  |-  ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> ( x e. RR /\ x <_ A ) ) | 
						
							| 18 | 10 17 | impbida |  |-  ( ph -> ( ( x e. RR /\ x <_ A ) <-> ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) ) | 
						
							| 19 | 18 | rabbidva2 |  |-  ( ph -> { x e. RR | x <_ A } = { x e. RR* | ( -oo < x /\ x <_ A ) } ) | 
						
							| 20 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 21 | 3 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 22 |  | iocval |  |-  ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo (,] A ) = { x e. RR* | ( -oo < x /\ x <_ A ) } ) | 
						
							| 23 | 20 21 22 | sylancr |  |-  ( ph -> ( -oo (,] A ) = { x e. RR* | ( -oo < x /\ x <_ A ) } ) | 
						
							| 24 | 19 23 | eqtr4d |  |-  ( ph -> { x e. RR | x <_ A } = ( -oo (,] A ) ) | 
						
							| 25 |  | iocmnfcld |  |-  ( A e. RR -> ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 26 | 3 25 | syl |  |-  ( ph -> ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 27 | 24 26 | eqeltrd |  |-  ( ph -> { x e. RR | x <_ A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 28 | 1 2 3 27 | orrvccel |  |-  ( ph -> ( X oRVC <_ A ) e. dom P ) |