Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstfrv.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvclteel.1 |
|- ( ph -> A e. RR ) |
4 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
5 |
4
|
ad2antrl |
|- ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> x e. RR* ) |
6 |
|
mnflt |
|- ( x e. RR -> -oo < x ) |
7 |
6
|
ad2antrl |
|- ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> -oo < x ) |
8 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> x <_ A ) |
9 |
7 8
|
jca |
|- ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> ( -oo < x /\ x <_ A ) ) |
10 |
5 9
|
jca |
|- ( ( ph /\ ( x e. RR /\ x <_ A ) ) -> ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) |
11 |
|
simprl |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x e. RR* ) |
12 |
3
|
adantr |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> A e. RR ) |
13 |
|
simprrl |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> -oo < x ) |
14 |
|
simprrr |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x <_ A ) |
15 |
|
xrre |
|- ( ( ( x e. RR* /\ A e. RR ) /\ ( -oo < x /\ x <_ A ) ) -> x e. RR ) |
16 |
11 12 13 14 15
|
syl22anc |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> x e. RR ) |
17 |
16 14
|
jca |
|- ( ( ph /\ ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) -> ( x e. RR /\ x <_ A ) ) |
18 |
10 17
|
impbida |
|- ( ph -> ( ( x e. RR /\ x <_ A ) <-> ( x e. RR* /\ ( -oo < x /\ x <_ A ) ) ) ) |
19 |
18
|
rabbidva2 |
|- ( ph -> { x e. RR | x <_ A } = { x e. RR* | ( -oo < x /\ x <_ A ) } ) |
20 |
|
mnfxr |
|- -oo e. RR* |
21 |
3
|
rexrd |
|- ( ph -> A e. RR* ) |
22 |
|
iocval |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo (,] A ) = { x e. RR* | ( -oo < x /\ x <_ A ) } ) |
23 |
20 21 22
|
sylancr |
|- ( ph -> ( -oo (,] A ) = { x e. RR* | ( -oo < x /\ x <_ A ) } ) |
24 |
19 23
|
eqtr4d |
|- ( ph -> { x e. RR | x <_ A } = ( -oo (,] A ) ) |
25 |
|
iocmnfcld |
|- ( A e. RR -> ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
26 |
3 25
|
syl |
|- ( ph -> ( -oo (,] A ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
27 |
24 26
|
eqeltrd |
|- ( ph -> { x e. RR | x <_ A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
28 |
1 2 3 27
|
orrvccel |
|- ( ph -> ( X oRVC <_ A ) e. dom P ) |