Step |
Hyp |
Ref |
Expression |
1 |
|
dstfrv.1 |
|
2 |
|
dstfrv.2 |
|
3 |
|
dstfrv.3 |
|
4 |
|
eqid |
|
5 |
|
domprobmeas |
|
6 |
1 5
|
syl |
|
7 |
1
|
adantr |
|
8 |
2
|
adantr |
|
9 |
|
simpr |
|
10 |
9
|
nnred |
|
11 |
7 8 10
|
orvclteel |
|
12 |
11
|
fmpttd |
|
13 |
1
|
adantr |
|
14 |
2
|
adantr |
|
15 |
|
simpr |
|
16 |
15
|
nnred |
|
17 |
15
|
peano2nnd |
|
18 |
17
|
nnred |
|
19 |
16
|
lep1d |
|
20 |
13 14 16 18 19
|
orvclteinc |
|
21 |
|
eqidd |
|
22 |
|
simpr |
|
23 |
22
|
oveq2d |
|
24 |
13 14 16
|
orvclteel |
|
25 |
21 23 15 24
|
fvmptd |
|
26 |
|
simpr |
|
27 |
26
|
oveq2d |
|
28 |
13 14 18
|
orvclteel |
|
29 |
21 27 17 28
|
fvmptd |
|
30 |
20 25 29
|
3sstr4d |
|
31 |
4 6 12 30
|
meascnbl |
|
32 |
|
measfn |
|
33 |
|
dffn5 |
|
34 |
33
|
biimpi |
|
35 |
6 32 34
|
3syl |
|
36 |
|
prob01 |
|
37 |
1 36
|
sylan |
|
38 |
35 37
|
fmpt3d |
|
39 |
|
fco |
|
40 |
38 12 39
|
syl2anc |
|
41 |
1 2
|
dstfrvunirn |
|
42 |
1
|
unveldomd |
|
43 |
41 42
|
eqeltrd |
|
44 |
|
prob01 |
|
45 |
1 43 44
|
syl2anc |
|
46 |
|
0xr |
|
47 |
|
pnfxr |
|
48 |
|
0le0 |
|
49 |
|
1re |
|
50 |
|
ltpnf |
|
51 |
49 50
|
ax-mp |
|
52 |
|
iccssico |
|
53 |
46 47 48 51 52
|
mp4an |
|
54 |
4 40 45 53
|
lmlimxrge0 |
|
55 |
31 54
|
mpbid |
|
56 |
|
eqidd |
|
57 |
|
fveq2 |
|
58 |
11 56 35 57
|
fmptco |
|
59 |
3
|
adantr |
|
60 |
|
simpr |
|
61 |
60
|
oveq2d |
|
62 |
61
|
fveq2d |
|
63 |
7 11
|
probvalrnd |
|
64 |
59 62 10 63
|
fvmptd |
|
65 |
64
|
mpteq2dva |
|
66 |
58 65
|
eqtr4d |
|
67 |
41
|
fveq2d |
|
68 |
|
probtot |
|
69 |
1 68
|
syl |
|
70 |
67 69
|
eqtrd |
|
71 |
55 66 70
|
3brtr3d |
|
72 |
|
1z |
|
73 |
|
reex |
|
74 |
73
|
mptex |
|
75 |
3 74
|
eqeltrdi |
|
76 |
|
nnuz |
|
77 |
|
eqid |
|
78 |
76 77
|
climmpt |
|
79 |
72 75 78
|
sylancr |
|
80 |
71 79
|
mpbird |
|