| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstfrv.1 |  | 
						
							| 2 |  | dstfrv.2 |  | 
						
							| 3 |  | dstfrv.3 |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | domprobmeas |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 | 1 | adantr |  | 
						
							| 8 | 2 | adantr |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 | 9 | nnred |  | 
						
							| 11 | 7 8 10 | orvclteel |  | 
						
							| 12 | 11 | fmpttd |  | 
						
							| 13 | 1 | adantr |  | 
						
							| 14 | 2 | adantr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 15 | nnred |  | 
						
							| 17 | 15 | peano2nnd |  | 
						
							| 18 | 17 | nnred |  | 
						
							| 19 | 16 | lep1d |  | 
						
							| 20 | 13 14 16 18 19 | orvclteinc |  | 
						
							| 21 |  | eqidd |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 13 14 16 | orvclteel |  | 
						
							| 25 | 21 23 15 24 | fvmptd |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 13 14 18 | orvclteel |  | 
						
							| 29 | 21 27 17 28 | fvmptd |  | 
						
							| 30 | 20 25 29 | 3sstr4d |  | 
						
							| 31 | 4 6 12 30 | meascnbl |  | 
						
							| 32 |  | measfn |  | 
						
							| 33 |  | dffn5 |  | 
						
							| 34 | 33 | biimpi |  | 
						
							| 35 | 6 32 34 | 3syl |  | 
						
							| 36 |  | prob01 |  | 
						
							| 37 | 1 36 | sylan |  | 
						
							| 38 | 35 37 | fmpt3d |  | 
						
							| 39 |  | fco |  | 
						
							| 40 | 38 12 39 | syl2anc |  | 
						
							| 41 | 1 2 | dstfrvunirn |  | 
						
							| 42 | 1 | unveldomd |  | 
						
							| 43 | 41 42 | eqeltrd |  | 
						
							| 44 |  | prob01 |  | 
						
							| 45 | 1 43 44 | syl2anc |  | 
						
							| 46 |  | 0xr |  | 
						
							| 47 |  | pnfxr |  | 
						
							| 48 |  | 0le0 |  | 
						
							| 49 |  | 1re |  | 
						
							| 50 |  | ltpnf |  | 
						
							| 51 | 49 50 | ax-mp |  | 
						
							| 52 |  | iccssico |  | 
						
							| 53 | 46 47 48 51 52 | mp4an |  | 
						
							| 54 | 4 40 45 53 | lmlimxrge0 |  | 
						
							| 55 | 31 54 | mpbid |  | 
						
							| 56 |  | eqidd |  | 
						
							| 57 |  | fveq2 |  | 
						
							| 58 | 11 56 35 57 | fmptco |  | 
						
							| 59 | 3 | adantr |  | 
						
							| 60 |  | simpr |  | 
						
							| 61 | 60 | oveq2d |  | 
						
							| 62 | 61 | fveq2d |  | 
						
							| 63 | 7 11 | probvalrnd |  | 
						
							| 64 | 59 62 10 63 | fvmptd |  | 
						
							| 65 | 64 | mpteq2dva |  | 
						
							| 66 | 58 65 | eqtr4d |  | 
						
							| 67 | 41 | fveq2d |  | 
						
							| 68 |  | probtot |  | 
						
							| 69 | 1 68 | syl |  | 
						
							| 70 | 67 69 | eqtrd |  | 
						
							| 71 | 55 66 70 | 3brtr3d |  | 
						
							| 72 |  | 1z |  | 
						
							| 73 |  | reex |  | 
						
							| 74 | 73 | mptex |  | 
						
							| 75 | 3 74 | eqeltrdi |  | 
						
							| 76 |  | nnuz |  | 
						
							| 77 |  | eqid |  | 
						
							| 78 | 76 77 | climmpt |  | 
						
							| 79 | 72 75 78 | sylancr |  | 
						
							| 80 | 71 79 | mpbird |  |