| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstrvprob.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | dstrvprob.3 | ⊢ ( 𝜑  →  𝐷  =  ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) ) ) | 
						
							| 4 |  | dstrvval.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝔅ℝ ) | 
						
							| 5 | 3 | fveq1d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐴 )  =  ( ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) ) ‘ 𝐴 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑋 ∘RV/𝑐  E  𝑎 )  =  ( 𝑋 ∘RV/𝑐  E  𝐴 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝐴 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) )  =  ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) ) | 
						
							| 9 |  | fvex | ⊢ ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝐴 ) )  ∈  V | 
						
							| 10 | 7 8 9 | fvmpt | ⊢ ( 𝐴  ∈  𝔅ℝ  →  ( ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) ) ‘ 𝐴 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝐴 ) ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  𝔅ℝ  ↦  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝑎 ) ) ) ‘ 𝐴 )  =  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝐴 ) ) ) | 
						
							| 12 | 1 2 4 | orvcelval | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  E  𝐴 )  =  ( ◡ 𝑋  “  𝐴 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑋 ∘RV/𝑐  E  𝐴 ) )  =  ( 𝑃 ‘ ( ◡ 𝑋  “  𝐴 ) ) ) | 
						
							| 14 | 5 11 13 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐴 )  =  ( 𝑃 ‘ ( ◡ 𝑋  “  𝐴 ) ) ) |