Metamath Proof Explorer


Theorem orvcelval

Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1 ( 𝜑𝑃 ∈ Prob )
dstrvprob.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
orvcelel.1 ( 𝜑𝐴 ∈ 𝔅 )
Assertion orvcelval ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) = ( 𝑋𝐴 ) )

Proof

Step Hyp Ref Expression
1 dstrvprob.1 ( 𝜑𝑃 ∈ Prob )
2 dstrvprob.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
3 orvcelel.1 ( 𝜑𝐴 ∈ 𝔅 )
4 1 2 3 orrvcval4 ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) = ( 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } ) )
5 epelg ( 𝐴 ∈ 𝔅 → ( 𝑥 E 𝐴𝑥𝐴 ) )
6 3 5 syl ( 𝜑 → ( 𝑥 E 𝐴𝑥𝐴 ) )
7 6 rabbidv ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } = { 𝑥 ∈ ℝ ∣ 𝑥𝐴 } )
8 dfin5 ( ℝ ∩ 𝐴 ) = { 𝑥 ∈ ℝ ∣ 𝑥𝐴 }
9 8 a1i ( 𝜑 → ( ℝ ∩ 𝐴 ) = { 𝑥 ∈ ℝ ∣ 𝑥𝐴 } )
10 elssuni ( 𝐴 ∈ 𝔅𝐴 𝔅 )
11 unibrsiga 𝔅 = ℝ
12 10 11 sseqtrdi ( 𝐴 ∈ 𝔅𝐴 ⊆ ℝ )
13 3 12 syl ( 𝜑𝐴 ⊆ ℝ )
14 sseqin2 ( 𝐴 ⊆ ℝ ↔ ( ℝ ∩ 𝐴 ) = 𝐴 )
15 13 14 sylib ( 𝜑 → ( ℝ ∩ 𝐴 ) = 𝐴 )
16 7 9 15 3eqtr2d ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } = 𝐴 )
17 16 imaeq2d ( 𝜑 → ( 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } ) = ( 𝑋𝐴 ) )
18 4 17 eqtrd ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) = ( 𝑋𝐴 ) )