Step |
Hyp |
Ref |
Expression |
1 |
|
dstrvprob.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstrvprob.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
orvcelel.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝔅ℝ ) |
4 |
1 2 3
|
orrvcval4 |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 E 𝐴 ) = ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } ) ) |
5 |
|
epelg |
⊢ ( 𝐴 ∈ 𝔅ℝ → ( 𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } = { 𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴 } ) |
8 |
|
dfin5 |
⊢ ( ℝ ∩ 𝐴 ) = { 𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴 } |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ℝ ∩ 𝐴 ) = { 𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴 } ) |
10 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ∪ 𝔅ℝ ) |
11 |
|
unibrsiga |
⊢ ∪ 𝔅ℝ = ℝ |
12 |
10 11
|
sseqtrdi |
⊢ ( 𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ℝ ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
14 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ℝ ↔ ( ℝ ∩ 𝐴 ) = 𝐴 ) |
15 |
13 14
|
sylib |
⊢ ( 𝜑 → ( ℝ ∩ 𝐴 ) = 𝐴 ) |
16 |
7 9 15
|
3eqtr2d |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } = 𝐴 ) |
17 |
16
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑥 ∈ ℝ ∣ 𝑥 E 𝐴 } ) = ( ◡ 𝑋 “ 𝐴 ) ) |
18 |
4 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 E 𝐴 ) = ( ◡ 𝑋 “ 𝐴 ) ) |