| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstrvprob.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvcelel.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝔅ℝ ) | 
						
							| 4 | 1 2 3 | orrvcval4 | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  E  𝐴 )  =  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  E  𝐴 } ) ) | 
						
							| 5 |  | epelg | ⊢ ( 𝐴  ∈  𝔅ℝ  →  ( 𝑥  E  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  ( 𝑥  E  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  E  𝐴 }  =  { 𝑥  ∈  ℝ  ∣  𝑥  ∈  𝐴 } ) | 
						
							| 8 |  | dfin5 | ⊢ ( ℝ  ∩  𝐴 )  =  { 𝑥  ∈  ℝ  ∣  𝑥  ∈  𝐴 } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( ℝ  ∩  𝐴 )  =  { 𝑥  ∈  ℝ  ∣  𝑥  ∈  𝐴 } ) | 
						
							| 10 |  | elssuni | ⊢ ( 𝐴  ∈  𝔅ℝ  →  𝐴  ⊆  ∪  𝔅ℝ ) | 
						
							| 11 |  | unibrsiga | ⊢ ∪  𝔅ℝ  =  ℝ | 
						
							| 12 | 10 11 | sseqtrdi | ⊢ ( 𝐴  ∈  𝔅ℝ  →  𝐴  ⊆  ℝ ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 14 |  | sseqin2 | ⊢ ( 𝐴  ⊆  ℝ  ↔  ( ℝ  ∩  𝐴 )  =  𝐴 ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( 𝜑  →  ( ℝ  ∩  𝐴 )  =  𝐴 ) | 
						
							| 16 | 7 9 15 | 3eqtr2d | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  𝑥  E  𝐴 }  =  𝐴 ) | 
						
							| 17 | 16 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑥  ∈  ℝ  ∣  𝑥  E  𝐴 } )  =  ( ◡ 𝑋  “  𝐴 ) ) | 
						
							| 18 | 4 17 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  E  𝐴 )  =  ( ◡ 𝑋  “  𝐴 ) ) |