| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 | ⊢ ( 𝜑  →  𝑃  ∈  Prob ) | 
						
							| 2 |  | dstrvprob.2 | ⊢ ( 𝜑  →  𝑋  ∈  ( rRndVar ‘ 𝑃 ) ) | 
						
							| 3 |  | orvcelel.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝔅ℝ ) | 
						
							| 4 | 1 2 3 | orvcelval | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  E  𝐴 )  =  ( ◡ 𝑋  “  𝐴 ) ) | 
						
							| 5 | 1 2 | rrvfinvima | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝔅ℝ ( ◡ 𝑋  “  𝑎 )  ∈  dom  𝑃 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  𝑎  =  𝐴 ) | 
						
							| 7 | 6 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  ( ◡ 𝑋  “  𝑎 )  =  ( ◡ 𝑋  “  𝐴 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  ( ( ◡ 𝑋  “  𝑎 )  ∈  dom  𝑃  ↔  ( ◡ 𝑋  “  𝐴 )  ∈  dom  𝑃 ) ) | 
						
							| 9 | 3 8 | rspcdv | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝔅ℝ ( ◡ 𝑋  “  𝑎 )  ∈  dom  𝑃  →  ( ◡ 𝑋  “  𝐴 )  ∈  dom  𝑃 ) ) | 
						
							| 10 | 5 9 | mpd | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  𝐴 )  ∈  dom  𝑃 ) | 
						
							| 11 | 4 10 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐  E  𝐴 )  ∈  dom  𝑃 ) |