Metamath Proof Explorer


Theorem orvcelel

Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1 ( 𝜑𝑃 ∈ Prob )
dstrvprob.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
orvcelel.1 ( 𝜑𝐴 ∈ 𝔅 )
Assertion orvcelel ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) ∈ dom 𝑃 )

Proof

Step Hyp Ref Expression
1 dstrvprob.1 ( 𝜑𝑃 ∈ Prob )
2 dstrvprob.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
3 orvcelel.1 ( 𝜑𝐴 ∈ 𝔅 )
4 1 2 3 orvcelval ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) = ( 𝑋𝐴 ) )
5 1 2 rrvfinvima ( 𝜑 → ∀ 𝑎 ∈ 𝔅 ( 𝑋𝑎 ) ∈ dom 𝑃 )
6 simpr ( ( 𝜑𝑎 = 𝐴 ) → 𝑎 = 𝐴 )
7 6 imaeq2d ( ( 𝜑𝑎 = 𝐴 ) → ( 𝑋𝑎 ) = ( 𝑋𝐴 ) )
8 7 eleq1d ( ( 𝜑𝑎 = 𝐴 ) → ( ( 𝑋𝑎 ) ∈ dom 𝑃 ↔ ( 𝑋𝐴 ) ∈ dom 𝑃 ) )
9 3 8 rspcdv ( 𝜑 → ( ∀ 𝑎 ∈ 𝔅 ( 𝑋𝑎 ) ∈ dom 𝑃 → ( 𝑋𝐴 ) ∈ dom 𝑃 ) )
10 5 9 mpd ( 𝜑 → ( 𝑋𝐴 ) ∈ dom 𝑃 )
11 4 10 eqeltrd ( 𝜑 → ( 𝑋RV/𝑐 E 𝐴 ) ∈ dom 𝑃 )