Step |
Hyp |
Ref |
Expression |
1 |
|
dstrvprob.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
dstrvprob.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
orvcelel.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝔅ℝ ) |
4 |
1 2 3
|
orvcelval |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 E 𝐴 ) = ( ◡ 𝑋 “ 𝐴 ) ) |
5 |
1 2
|
rrvfinvima |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝔅ℝ ( ◡ 𝑋 “ 𝑎 ) ∈ dom 𝑃 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
7 |
6
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ( ◡ 𝑋 “ 𝑎 ) = ( ◡ 𝑋 “ 𝐴 ) ) |
8 |
7
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ( ( ◡ 𝑋 “ 𝑎 ) ∈ dom 𝑃 ↔ ( ◡ 𝑋 “ 𝐴 ) ∈ dom 𝑃 ) ) |
9 |
3 8
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝔅ℝ ( ◡ 𝑋 “ 𝑎 ) ∈ dom 𝑃 → ( ◡ 𝑋 “ 𝐴 ) ∈ dom 𝑃 ) ) |
10 |
5 9
|
mpd |
⊢ ( 𝜑 → ( ◡ 𝑋 “ 𝐴 ) ∈ dom 𝑃 ) |
11 |
4 10
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 E 𝐴 ) ∈ dom 𝑃 ) |