Metamath Proof Explorer


Theorem orvcelel

Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1 φPProb
dstrvprob.2 φXRndVarP
orvcelel.1 φA𝔅
Assertion orvcelel φXERV/cAdomP

Proof

Step Hyp Ref Expression
1 dstrvprob.1 φPProb
2 dstrvprob.2 φXRndVarP
3 orvcelel.1 φA𝔅
4 1 2 3 orvcelval φXERV/cA=X-1A
5 1 2 rrvfinvima φa𝔅X-1adomP
6 simpr φa=Aa=A
7 6 imaeq2d φa=AX-1a=X-1A
8 7 eleq1d φa=AX-1adomPX-1AdomP
9 3 8 rspcdv φa𝔅X-1adomPX-1AdomP
10 5 9 mpd φX-1AdomP
11 4 10 eqeltrd φXERV/cAdomP