Step |
Hyp |
Ref |
Expression |
1 |
|
dstrvprob.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstrvprob.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
orvcelel.1 |
|- ( ph -> A e. BrSiga ) |
4 |
1 2 3
|
orvcelval |
|- ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) |
5 |
1 2
|
rrvfinvima |
|- ( ph -> A. a e. BrSiga ( `' X " a ) e. dom P ) |
6 |
|
simpr |
|- ( ( ph /\ a = A ) -> a = A ) |
7 |
6
|
imaeq2d |
|- ( ( ph /\ a = A ) -> ( `' X " a ) = ( `' X " A ) ) |
8 |
7
|
eleq1d |
|- ( ( ph /\ a = A ) -> ( ( `' X " a ) e. dom P <-> ( `' X " A ) e. dom P ) ) |
9 |
3 8
|
rspcdv |
|- ( ph -> ( A. a e. BrSiga ( `' X " a ) e. dom P -> ( `' X " A ) e. dom P ) ) |
10 |
5 9
|
mpd |
|- ( ph -> ( `' X " A ) e. dom P ) |
11 |
4 10
|
eqeltrd |
|- ( ph -> ( X oRVC _E A ) e. dom P ) |