Metamath Proof Explorer


Theorem orvcelel

Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1
|- ( ph -> P e. Prob )
dstrvprob.2
|- ( ph -> X e. ( rRndVar ` P ) )
orvcelel.1
|- ( ph -> A e. BrSiga )
Assertion orvcelel
|- ( ph -> ( X oRVC _E A ) e. dom P )

Proof

Step Hyp Ref Expression
1 dstrvprob.1
 |-  ( ph -> P e. Prob )
2 dstrvprob.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 orvcelel.1
 |-  ( ph -> A e. BrSiga )
4 1 2 3 orvcelval
 |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) )
5 1 2 rrvfinvima
 |-  ( ph -> A. a e. BrSiga ( `' X " a ) e. dom P )
6 simpr
 |-  ( ( ph /\ a = A ) -> a = A )
7 6 imaeq2d
 |-  ( ( ph /\ a = A ) -> ( `' X " a ) = ( `' X " A ) )
8 7 eleq1d
 |-  ( ( ph /\ a = A ) -> ( ( `' X " a ) e. dom P <-> ( `' X " A ) e. dom P ) )
9 3 8 rspcdv
 |-  ( ph -> ( A. a e. BrSiga ( `' X " a ) e. dom P -> ( `' X " A ) e. dom P ) )
10 5 9 mpd
 |-  ( ph -> ( `' X " A ) e. dom P )
11 4 10 eqeltrd
 |-  ( ph -> ( X oRVC _E A ) e. dom P )