| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstrvprob.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | orvcelel.1 |  |-  ( ph -> A e. BrSiga ) | 
						
							| 4 | 1 2 3 | orvcelval |  |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) | 
						
							| 5 | 1 2 | rrvfinvima |  |-  ( ph -> A. a e. BrSiga ( `' X " a ) e. dom P ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ a = A ) -> a = A ) | 
						
							| 7 | 6 | imaeq2d |  |-  ( ( ph /\ a = A ) -> ( `' X " a ) = ( `' X " A ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( ( ph /\ a = A ) -> ( ( `' X " a ) e. dom P <-> ( `' X " A ) e. dom P ) ) | 
						
							| 9 | 3 8 | rspcdv |  |-  ( ph -> ( A. a e. BrSiga ( `' X " a ) e. dom P -> ( `' X " A ) e. dom P ) ) | 
						
							| 10 | 5 9 | mpd |  |-  ( ph -> ( `' X " A ) e. dom P ) | 
						
							| 11 | 4 10 | eqeltrd |  |-  ( ph -> ( X oRVC _E A ) e. dom P ) |