Step |
Hyp |
Ref |
Expression |
1 |
|
dstrvprob.1 |
|- ( ph -> P e. Prob ) |
2 |
|
dstrvprob.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
dstrvprob.3 |
|- ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) |
4 |
|
dstrvval.1 |
|- ( ph -> A e. BrSiga ) |
5 |
3
|
fveq1d |
|- ( ph -> ( D ` A ) = ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) ) |
6 |
|
oveq2 |
|- ( a = A -> ( X oRVC _E a ) = ( X oRVC _E A ) ) |
7 |
6
|
fveq2d |
|- ( a = A -> ( P ` ( X oRVC _E a ) ) = ( P ` ( X oRVC _E A ) ) ) |
8 |
|
eqid |
|- ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) |
9 |
|
fvex |
|- ( P ` ( X oRVC _E A ) ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( A e. BrSiga -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) ) |
11 |
4 10
|
syl |
|- ( ph -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) ) |
12 |
1 2 4
|
orvcelval |
|- ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) |
13 |
12
|
fveq2d |
|- ( ph -> ( P ` ( X oRVC _E A ) ) = ( P ` ( `' X " A ) ) ) |
14 |
5 11 13
|
3eqtrd |
|- ( ph -> ( D ` A ) = ( P ` ( `' X " A ) ) ) |