| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dstrvprob.1 |  |-  ( ph -> P e. Prob ) | 
						
							| 2 |  | dstrvprob.2 |  |-  ( ph -> X e. ( rRndVar ` P ) ) | 
						
							| 3 |  | dstrvprob.3 |  |-  ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ) | 
						
							| 4 |  | dstrvval.1 |  |-  ( ph -> A e. BrSiga ) | 
						
							| 5 | 3 | fveq1d |  |-  ( ph -> ( D ` A ) = ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) ) | 
						
							| 6 |  | oveq2 |  |-  ( a = A -> ( X oRVC _E a ) = ( X oRVC _E A ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( a = A -> ( P ` ( X oRVC _E a ) ) = ( P ` ( X oRVC _E A ) ) ) | 
						
							| 8 |  | eqid |  |-  ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) | 
						
							| 9 |  | fvex |  |-  ( P ` ( X oRVC _E A ) ) e. _V | 
						
							| 10 | 7 8 9 | fvmpt |  |-  ( A e. BrSiga -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) ) | 
						
							| 12 | 1 2 4 | orvcelval |  |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( P ` ( X oRVC _E A ) ) = ( P ` ( `' X " A ) ) ) | 
						
							| 14 | 5 11 13 | 3eqtrd |  |-  ( ph -> ( D ` A ) = ( P ` ( `' X " A ) ) ) |