Metamath Proof Explorer


Theorem dstrvval

Description: The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1
|- ( ph -> P e. Prob )
dstrvprob.2
|- ( ph -> X e. ( rRndVar ` P ) )
dstrvprob.3
|- ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) )
dstrvval.1
|- ( ph -> A e. BrSiga )
Assertion dstrvval
|- ( ph -> ( D ` A ) = ( P ` ( `' X " A ) ) )

Proof

Step Hyp Ref Expression
1 dstrvprob.1
 |-  ( ph -> P e. Prob )
2 dstrvprob.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 dstrvprob.3
 |-  ( ph -> D = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) )
4 dstrvval.1
 |-  ( ph -> A e. BrSiga )
5 3 fveq1d
 |-  ( ph -> ( D ` A ) = ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) )
6 oveq2
 |-  ( a = A -> ( X oRVC _E a ) = ( X oRVC _E A ) )
7 6 fveq2d
 |-  ( a = A -> ( P ` ( X oRVC _E a ) ) = ( P ` ( X oRVC _E A ) ) )
8 eqid
 |-  ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) = ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) )
9 fvex
 |-  ( P ` ( X oRVC _E A ) ) e. _V
10 7 8 9 fvmpt
 |-  ( A e. BrSiga -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) )
11 4 10 syl
 |-  ( ph -> ( ( a e. BrSiga |-> ( P ` ( X oRVC _E a ) ) ) ` A ) = ( P ` ( X oRVC _E A ) ) )
12 1 2 4 orvcelval
 |-  ( ph -> ( X oRVC _E A ) = ( `' X " A ) )
13 12 fveq2d
 |-  ( ph -> ( P ` ( X oRVC _E A ) ) = ( P ` ( `' X " A ) ) )
14 5 11 13 3eqtrd
 |-  ( ph -> ( D ` A ) = ( P ` ( `' X " A ) ) )